1,794,937 research outputs found
Why frequencies are natural
Research in mathematical cognition has shown that rates, and other interpretations of x/y, are hard to learn and understand. On the other hand, there is extensive evidence that the brain is endowed with a specialized mechanism for representing and manipulating the numerosities of sets – that is, frequencies. Hence, base-rates are neglected precisely because they are rates, whereas frequencies are indeed natural
Estimating probabilities from experimental frequencies
Estimating the probability distribution 'q' governing the behaviour of a
certain variable by sampling its value a finite number of times most typically
involves an error. Successive measurements allow the construction of a
histogram, or frequency count 'f', of each of the possible outcomes. In this
work, the probability that the true distribution be 'q', given that the
frequency count 'f' was sampled, is studied. Such a probability may be written
as a Gibbs distribution. A thermodynamic potential, which allows an easy
evaluation of the mean Kullback-Leibler divergence between the true and
measured distribution, is defined. For a large number of samples, the
expectation value of any function of 'q' is expanded in powers of the inverse
number of samples. As an example, the moments, the entropy and the mutual
information are analyzed.Comment: 10 pages, 3 figures, to be published in Physical Review
Magnetic nanocomposites at microwave frequencies
Most conventional magnetic materials used in the electronic devices are
ferrites, which are composed of micrometer-size grains. But ferrites have small
saturation magnetization, therefore the performance at GHz frequencies is
rather poor. That is why functionalized nanocomposites comprising magnetic
nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm,
and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have
a significant potential for the electronics industry. When the size of the
nanoparticles is smaller than the critical size for multidomain formation,
these nanocomposites can be regarded as an ensemble of particles in
single-domain states and the losses (due for example to eddy currents) are
expected to be relatively small. Here we review the theory of magnetism in such
materials, and we present a novel measurement method used for the
characterization of the electromagnetic properties of composites with
nanomagnetic insertions. We also present a few experimental results obtained on
composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table
Space VLBI at Low Frequencies
At sufficiently low frequencies, no ground-based radio array will be able to
produce high resolution images while looking through the ionosphere. A
space-based array will be needed to explore the objects and processes which
dominate the sky at the lowest radio frequencies. An imaging radio
interferometer based on a large number of small, inexpensive satellites would
be able to track solar radio bursts associated with coronal mass ejections out
to the distance of Earth, determine the frequency and duration of early epochs
of nonthermal activity in galaxies, and provide unique information about the
interstellar medium. This would be a "space-space" VLBI mission, as only
baselines between satellites would be used. Angular resolution would be limited
only by interstellar and interplanetary scattering.Comment: To appear in "Astrophysical Phenomena Revealed by Space VLBI", ed. H.
Hirabayashi, P. Edwards, and D. Murphy (ISAS, Japan
- …