6,389 research outputs found
Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks
We present a neural network approach for tomographic imaging problem using interpolation methods and fan-beam projections. This approach uses a partially connected neural network especially assembled for solving tomographic\ud
reconstruction with no need of training. We extended the calculations to perform reconstruction with interpolation and to allow tomography of fan-beam geometry. The main goal is to aggregate speed while maintaining or improving the quality of the tomographic reconstruction process
Optical tomography: Image improvement using mixed projection of parallel and fan beam modes
Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam
Reconstruction of binary matrices from fan-beam projections
The problem of the reconstruction of binary matrices from their fan-beam projections is investigated here. A fan-beam projection model is implemented and afterwards employed in systematic experiments to determine the optimal parameter values for a data acquisition and reconstruction algorithm. The fan-beam model, the reconstruction algorithm which uses the optimization method of Simulated Annealing, the simulation experiments, and the results are then discussed in turn
Singular value decomposition for the 2D fan-beam Radon transform of tensor fields
In this article we study the fan-beam Radon transform of
symmetrical solenoidal 2D tensor fields of arbitrary rank in a unit disc
as the operator, acting from the object space to the data space
The orthogonal polynomial basis of solenoidal tensor
fields on the disc was built with the help of Zernike polynomials
and then a singular value decomposition (SVD) for the operator
was obtained. The inversion formula for the fan-beam tensor transform follows from this decomposition. Thus obtained inversion formula can be
used as a tomographic filter for splitting a known tensor field into potential
and solenoidal parts. Numerical results are presented.Comment: LaTeX, 37 pages with 5 figure
A new method of observing weak extended x-ray sources with RHESSI
We present a new method, fan-beam modulation, for observing weak extended
x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager
(RHESSI). This space-based solar x-ray and gamma-ray telescope has much greater
sensitivity than previous experiments in the 3-25 keV range, but is normally
not well suited to detecting extended sources since their signal is not
modulated by RHESSI's rotating grids. When the spacecraft is offpointed from
the target source, however, the fan-beam modulation time-modulates the
transmission by shadowing resulting from exploiting the finite thickness of the
grids. In this paper we detail how the technique is implemented and verify its
consistency with sources with clear known signals that have occurred during
RHESSI offpointing: microflares and the Crab Nebula. In both cases the results
are consistent with previous and complementary measurements. Preliminary work
indicates that this new technique allows RHESSI to observe the integrated hard
x-ray spectrum of weak extended sources on the quiet Sun.Comment: Publishe
- …