843,164 research outputs found
Automatic human face detection for content-based image annotation
In this paper, an automatic human face detection approach using colour analysis is applied for content-based image annotation. In the face detection, the probable face region is detected by adaptive boosting algorithm, and then combined with a colour filtering classifier to enhance the accuracy in face detection. The initial experimental benchmark shows the proposed scheme can be efficiently applied for image annotation with higher fidelity
CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection
Robust face detection in the wild is one of the ultimate components to
support various facial related problems, i.e. unconstrained face recognition,
facial periocular recognition, facial landmarking and pose estimation, facial
expression recognition, 3D facial model construction, etc. Although the face
detection problem has been intensely studied for decades with various
commercial applications, it still meets problems in some real-world scenarios
due to numerous challenges, e.g. heavy facial occlusions, extremely low
resolutions, strong illumination, exceptionally pose variations, image or video
compression artifacts, etc. In this paper, we present a face detection approach
named Contextual Multi-Scale Region-based Convolution Neural Network (CMS-RCNN)
to robustly solve the problems mentioned above. Similar to the region-based
CNNs, our proposed network consists of the region proposal component and the
region-of-interest (RoI) detection component. However, far apart of that
network, there are two main contributions in our proposed network that play a
significant role to achieve the state-of-the-art performance in face detection.
Firstly, the multi-scale information is grouped both in region proposal and RoI
detection to deal with tiny face regions. Secondly, our proposed network allows
explicit body contextual reasoning in the network inspired from the intuition
of human vision system. The proposed approach is benchmarked on two recent
challenging face detection databases, i.e. the WIDER FACE Dataset which
contains high degree of variability, as well as the Face Detection Dataset and
Benchmark (FDDB). The experimental results show that our proposed approach
trained on WIDER FACE Dataset outperforms strong baselines on WIDER FACE
Dataset by a large margin, and consistently achieves competitive results on
FDDB against the recent state-of-the-art face detection methods
Unconstrained Face Detection and Open-Set Face Recognition Challenge
Face detection and recognition benchmarks have shifted toward more difficult
environments. The challenge presented in this paper addresses the next step in
the direction of automatic detection and identification of people from outdoor
surveillance cameras. While face detection has shown remarkable success in
images collected from the web, surveillance cameras include more diverse
occlusions, poses, weather conditions and image blur. Although face
verification or closed-set face identification have surpassed human
capabilities on some datasets, open-set identification is much more complex as
it needs to reject both unknown identities and false accepts from the face
detector. We show that unconstrained face detection can approach high detection
rates albeit with moderate false accept rates. By contrast, open-set face
recognition is currently weak and requires much more attention.Comment: This is an ERRATA version of the paper originally presented at the
International Joint Conference on Biometrics. Due to a bug in our evaluation
code, the results of the participants changed. The final conclusion, however,
is still the sam
- …