7,863,435 research outputs found
Tracing CP-violation in Lepton Flavor Violating Muon Decays
Although the Lepton Flavor Violating (LFV) decay is
forbidden in the Standard Model (SM), it can take place within various theories
beyond the SM. If the branching ratio of this decay saturates its present bound
[{\it i.e.,} Br], the forthcoming
experiments can measure the branching ratio with high precision and
consequently yield information on the sources of LFV. In this letter, we show
that for polarized , by studying the angular distribution of the
transversely polarized positron and linearly polarized photon we can derive
information on the CP-violating sources beyond those in the SM. We also study
the angular distribution of the final particles in the decay where is defined to be the more energetic positron. We show
that transversely polarized can provide information on a certain
combination of the CP-violating phases of the underlying theory which would be
lost by averaging over the spin of .Comment: 6 pages, 2 figure
Sensor enclosures: example application and implications for data coherence
Sensors deployed in natural environments, such as rivers, beaches and glaciers, experience large forces and damaging environmental conditions. Sensors need to be robust, securely operate for extended time periods and be readily relocated and serviced. The sensors must be housed in materials that mimic natural conditions of size, density, shape and roughness. We have developed an encasement system for sensors required to measure large forces experienced by mobile river sediment grains. Sensors are housed within two discrete cases that are rigidly conjoined. The inner case exactly fits the sensor, radio components and power source. This case can be mounted within outer cases of any larger size and can be precisely moulded to match the shapes of natural sediment. Total grain mass can be controlled by packing the outer case with dense material. Case design uses Solid-WorksTM software, and shape-matching involved 3D laser scanning of natural pebbles. The cases were printed using a HP DesignjetTM 3D printer that generates high precision parts that lock rigidly in place. The casings are watertight and robust. Laboratory testing produces accurate results over a wider range of accelerations than previously reported
Data migration in archives of Serbia and Montenegro: Concept and example
We present organization of database used to store metadata about backup i.e
about electronic files that make backup, and describe problems that occurred
in the process of migrating data before database has been designed and fille
Imaging of a fluid injection process using geophysical data - A didactic example
In many subsurface industrial applications, fluids are injected into or withdrawn from a geologic formation. It is of practical interest to quantify precisely where, when, and by how much the injected fluid alters the state of the subsurface. Routine geophysical monitoring of such processes attempts to image the way that geophysical properties, such as seismic velocities or electrical conductivity, change through time and space and to then make qualitative inferences as to where the injected fluid has migrated. The more rigorous formulation of the time-lapse geophysical inverse problem forecasts how the subsurface evolves during the course of a fluid-injection application. Using time-lapse geophysical signals as the data to be matched, the model unknowns to be estimated are the multiphysics forward-modeling parameters controlling the fluid-injection process. Properly reproducing the geophysical signature of the flow process, subsequent simulations can predict the fluid migration and alteration in the subsurface. The dynamic nature of fluid-injection processes renders imaging problems more complex than conventional geophysical imaging for static targets. This work intents to clarify the related hydrogeophysical parameter estimation concepts
- …