39,956 research outputs found

    Modulated 3D cross-correlation light scattering: improving turbid sample characterization

    Get PDF
    Accurate characterization using static light scattering (SLS) and dynamic light scattering (DLS) methods mandates the measurement and analysis of singly-scattered light. In turbid samples, the suppression of multiple scattering is therefore required to obtain meaningful results. One powerful technique for achieving this, known as 3D cross-correlation, uses two simultaneous light scattering experiments performed at the same scattering vector on the same sample volume in order to extract only the single scattering information common to both. Here we present a significant improvement to this method in which the two scattering experiments are temporally separated by modulating the incident laser beams and gating the detector outputs at frequencies exceeding the timescale of the system dynamics. This robust modulation scheme eliminates cross-talk between the two beam- detector pairs and leads to a four-fold improvement in the cross-correlation intercept. We measure the dynamic and angular-dependent scattering intensity of turbid colloidal suspensions and exploit the improved signal quality of the modulated 3D cross-correlation DLS and SLS techniques.Comment: Review of Scientific Instruments, accepted for publicatio

    Investigating Static and Dynamic Light Scattering

    Full text link
    A new size, static radii RsR_{s}, can be measured accurately using Static Light Scattering (SLS) technique when the Rayleigh-Gans-Debye approximation is valid for dilute homogenous spherical particles in dispersion. The method proposed in this work not only can measures the particle size distribution and average molar mass accurately but also enables us to explore Dynamic Light Scattering (DLS) technique further. Detailed investigation of the normalized time auto-correlation function of the scattered light intensity g2)(τ)g^{2)}(\tau) shows that the measurements of DLS can be expected accurately and the static and hydrodynamic radii of nanoparticles are different. Only at some special conditions, the Z-average hydrodynamic radius can be measured accurately at a given scattering angle. The fact that the values of average hydrodynamic radius measured at different scattering angles are consistent or the values of polydispersity index are small does not mean the particle size distribution is narrow or monodisperse.Comment: 8 figures, discussing the questions about the accurate size measurements of particles obtained using Dynamic Light Scattering technique and the particle sizes obtained using Static Light Scattering techniqu

    Characterizing Nanoparticle Size by Dynamic Light Scattering Technique (DLS)

    Get PDF
    The Dynamic Light Scattering Technique was used to determine the size, shape and diffusion coefficient of nanoparticle. The intensity auto correlation functions of light scattered by particles in a solution were measured by using a photomultiplier tube and analyzed to get the relaxation rates for decay of intensity correlations, which correspond to the diffusion constants pertaining to the motion of the particle. In the case of nanorods there are two types of motion - translational and rotational. By dis-entangling the relaxation rates, corresponding to these two types of motion, the shape and size of nanoparticle could be characterized. These experiments, though limited in scope, demonstrate the promise of dynamical light scattering as an inexpensive and convenient technique for characterizing regular shaped nano-particles in a fluid medium

    Self-diffusion and Cooperative Diffusion in Semidilute Polymer Solutions as measured by Fluorescence Correlation Spectroscopy

    Full text link
    We present a comprehensive investigation of polymer diffusion in the semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the self-diffusion coefficient while DLS gives the cooperative diffusion coefficient for exactly the same molecular weights and concentrations. Using FCS we observe a new fast mode in the semidilute entangled concentration regime beyond the slower mode which is due to self-diffusion. Comparison of FCS data with data obtained by DLS on the same polymers shows that the second mode observed in FCS is identical to the cooperative diffusion coefficient measured with DLS. An in-depth analysis and a comparison with current theoretical models demonstrates that the new cooperative mode observed in FCS is due to the effective long-range interaction of the chains through the transient entanglement network

    Apparatus for simultaneous DLS-SANS investigations of dynamics and structure in soft matter

    Full text link
    Dynamic Light Scattering (DLS) and Small-Angle Neutron Scattering (SANS) are two key tools with which to probe the dynamic and static structure factor, respectively, in soft matter. Usually DLS and SANS measurements are performed separately, in different laboratories, on different samples and at different times. However, this methodology has particular disadvantages for a large variety of soft materials which exhibit high sensitivity to small changes in fundamental parameters such as waiting times, concentration, pH, ionic strength, etc. Here we report on a new portable DLS-SANS apparatus that allows one to simultaneously measure both the microscopic dynamics (through DLS) and the static structure (through SANS) on the same sample. The apparatus has been constructed as a collaboration between two laboratories, each an expert in one of the scattering methods, and was commissioned on the \textit{LOQ} and \textit{ZOOM} SANS instruments at the ISIS Pulsed Neutron \& Muon Source, U.K

    Measurement of Dynamic Light Scattering Intensity in Gels

    Get PDF
    In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity, extrapolated to zero concentration, is identical to that found by static light scattering from the same polymers in solution. The gel environment modifies the second and third virial coefficients, providing a means of evaluating the interaction between the polymers and the gel

    Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    Get PDF
    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions

    Softening of the stiffness of bottlebrush polymers by mutual interaction

    Full text link
    We study bottlebrush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side-chains with ca. 60 monomer units. The SLS- and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a worm-like chain with a contour length of 380 nm and a persistence length of 17.5 nm. An analysis of the DLS data confirm these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottlebrush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration 40.59 g/l under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.Comment: 4 pages, 4 figure
    • 

    corecore