708 research outputs found
Characterization of a Differential Radio-Frequency Single-Electron Transistor
We have fabricated and characterized a new type of electrometer that couples
two parallel single-electron transistors (SETs) to a radio-frequency tank
circuit for use as a differential RF-SET. We demonstrate operation of this
device in summing, differential, and single-SET operation modes, and use it to
measure a Coulomb staircase from a differential single Cooper-pair box. In
differential mode, the device is sensitive to uncorrelated input signals while
screening out correlated ones.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter
High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast.
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
A Note on Technical Efficiency, Productivity Growth and Competitiveness
‘Productivity and efficiency growth enhances competitiveness’. Similarly formulated statements are common in the literature on the economic performance of firms, industries and nations. This conventional perception in the economic literature, originating from trade and growth theory models, however, lacks a clearly defined mathematical formulation. Earlier work by Page (1980) and Nishimizu and Page (1986) provides an elegant formalization of the relationship between the productivity growth and competitiveness measured by the Domestic Resource Costs (DRC) ratio. However, the relationship between technical efficiency and competitiveness has not been addressed in the literature. Moreover, the DRC is a biased measure of competitiveness. We propose static and dynamic decompositions of competitiveness measured by the unbiased Social Cost Benefit Ratio (SCB) indicator using a distance function approach, and demonstrate these decompositions using simulated data. These decompositions extend earlier work to formalize the relationship between technical efficiency, productivity and competitiveness, and demonstrate that competitiveness is also influenced by other factors that can override the effects of efficiency or productivity improvements.Agribusiness,
Kinetics of non-equilibrium quasiparticle tunneling in superconducting charge qubits
We directly observe low-temperature non-equilibrium quasiparticle tunneling
in a pair of charge qubits based on the single Cooper-pair box. We measure
even- and odd-state dwell time distributions as a function of temperature, and
interpret these results using a kinetic theory. While the even-state lifetime
is exponentially distributed, the odd-state distribution is more heavily
weighted to short times, implying that odd-to-even tunnel events are not
described by a homogenous Poisson process. The mean odd-state dwell time
increases sharply at low temperature, which is consistent with quasiparticles
tunneling out of the island before reaching thermal equilibrium.Comment: Replaced Figure 1 with color version, corrected more typos. Version
submitted to PR
- …