23 research outputs found

    Regulation of MntH by a Dual Mn(II)- and Fe(II)-Dependent Transcriptional Repressor (DR2539) in Deinococcus radiodurans

    Get PDF
    The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs) revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH) gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions

    Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Deinococcus radiodurans </it>accumulates high levels of manganese ions, and this is believed to be correlated with the radiation resistance ability of this microorganism. However, the maintenance of manganese ion homeostasis in <it>D. radiodurans </it>remains to be investigated.</p> <p>Results</p> <p>In this study, we identified the manganese efflux protein (MntE) in <it>D. radiodurans</it>. The null mutant of <it>mntE </it>was more sensitive than the wild-type strain to manganese ions, and the growth of the <it>mntE </it>mutant was delayed in manganese-supplemented media. Furthermore, there was a substantial increase in the <it>in vivo </it>concentration of manganese ions. Consistent with these characteristics, the <it>mntE </it>mutant was more resistant to H<sub>2</sub>O<sub>2</sub>, ultraviolet rays, and γ-radiation. The intracellular protein oxidation (carbonylation) level of the mutant strain was remarkably lower than that of the wild-type strain.</p> <p>Conclusions</p> <p>Our results indicated that <it>dr1236 </it>is indeed a <it>mntE </it>homologue and is indispensable for maintaining manganese homeostasis in <it>D. radiodurans</it>. The data also provide additional evidence for the involvement of intracellular manganese ions in the radiation resistance of <it>D. radiodurans</it>.</p

    Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Deinococcus radiodurans </it>accumulates high levels of manganese ions, and this is believed to be correlated with the radiation resistance ability of this microorganism. However, the maintenance of manganese ion homeostasis in <it>D. radiodurans </it>remains to be investigated.</p> <p>Results</p> <p>In this study, we identified the manganese efflux protein (MntE) in <it>D. radiodurans</it>. The null mutant of <it>mntE </it>was more sensitive than the wild-type strain to manganese ions, and the growth of the <it>mntE </it>mutant was delayed in manganese-supplemented media. Furthermore, there was a substantial increase in the <it>in vivo </it>concentration of manganese ions. Consistent with these characteristics, the <it>mntE </it>mutant was more resistant to H<sub>2</sub>O<sub>2</sub>, ultraviolet rays, and γ-radiation. The intracellular protein oxidation (carbonylation) level of the mutant strain was remarkably lower than that of the wild-type strain.</p> <p>Conclusions</p> <p>Our results indicated that <it>dr1236 </it>is indeed a <it>mntE </it>homologue and is indispensable for maintaining manganese homeostasis in <it>D. radiodurans</it>. The data also provide additional evidence for the involvement of intracellular manganese ions in the radiation resistance of <it>D. radiodurans</it>.</p

    Ionizing Radiation Resistance in Deinococcus Radiodurans

    Get PDF
    Deinococcus radiodurans is unmatched among all known species in its ability to resist ionizing radiation and other DNA-damaging factors. It is considered a model organism in the study of DNA damage and repair. Treatment of D. radiodurans with an acute dose of 5,000 Gy of ionizing radiation with almost no loss of viability, and an acute dose of 15,000 Gy with 37% viability. The extreme radiation resistance of this bacterium is due to efficient DNA repair capacity, high antioxidant activities, and unique cell structure. Based on the latest findings, the general characteristics and ionizing radiation resistance mechanisms of D. radiodurans are reviewed and discussed in this paper

    Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    Get PDF
    Progress is briefly summarized in these areas: ionizing radiation resistance in bacteria; a hypothesis regarding ionizing radiation resistance emerging for bacterial cells; transcriptome analysis of irradiated D. radiodurans and Shewanella oneidensis; the role of metal reduction in Mn-dependnet Deinococcal species; and engineered Deinococcus strains as models for bioremediation. Key findings are also reported regarding protein oxidation as a possible key to bacterial desiccation resistance, and the whole-genome sequence of the thermophile Deinococcus geothermalis
    corecore