29,821 research outputs found
Recommended from our members
Rapid Isolation of Dorsal Root Ganglion Macrophages.
There are growing interests to study the molecular and cellular interactions among immune cells and sensory neurons in the dorsal root ganglia after peripheral nerve injury. Peripheral monocytic cells, including macrophages, are known to respond to a tissue injury through phagocytosis, antigen presentation, and cytokine release. Emerging evidence has implicated the contribution of dorsal root ganglia macrophages to neuropathic pain development and axonal repair in the context of nerve injury. Rapidly phenotyping (or "rapid isolation of") the response of dorsal root ganglia macrophages in the context of nerve injury is desired to identify the unknown neuroimmune factors. Here we demonstrate how our lab rapidly and effectively isolates macrophages from the dorsal root ganglia using an enzyme-free mechanical dissociation protocol. The samples are kept on ice throughout to limit cellular stress. This protocol is far less time consuming compared to the standard enzymatic protocol and has been routinely used for our Fluorescence-activated Cell Sorting analysis
Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.
Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate
Notochord grafts do not suppress formation of neural crest cells or commissural neurons
Grafting experiments previously have established that the notochord affects dorsoventral polarity of the neural tube by inducing the formation of ventral structures such as motor neurons and the floor plate. Here, we examine if the notochord inhibits formation of dorsal structures by grafting a notochord within or adjacent to the dorsal neural tube prior to or shortly after tube closure. In all cases, neural crest cells emigrated from the neural tube adjacent to the ectopic notochord. When analyzed at stages after ganglion formation, the dorsal root ganglia appeared reduced in size and shifted in position in embryos receiving grafts. Another dorsal cell type, commissural neurons, identified by CRABP and neurofilament immunoreactivity, differentiated in the vicinity of the ectopic notochord. Numerous neuronal cell bodies and axonal processes were observed within the induced, but not endogenous, floor plate 1 to 2 days after implantation but appeared to be cleared with time. These results suggest that dorsally implanted notochords cannot prevent the formation of neural crest cells or commissural neurons, but can alter the size and position of neural crest-derived dorsal root ganglia
Focal conduction block in the dorsal root ganglion in experimental allergic neuritis
Acute experimental allergic neuritis was induced in Lewis rats by inoculation with bovine intradural root myelin and adjuvants. In terminal experiments, sensory conduction was assessed in rats with hindlimb ataxia and weakness by stimulating the exposed sciatic nerve and recording directly from the exposed L-4 spinal nerve, dorsal root ganglion, dorsal root, and dorsal root entry zone. Focal conduction block was present in a high proportion of large-diameter fibers in the dorsal root ganglion. In contrast, nerve conduction in the peripheral nerve and spinal nerve was essentially normal apart from probable conduction block in some fibers in the proximal spinal nerve in a minority of rats. The afferent volley arriving at the dorsal root entry zone of the spinal cord was greatly reduced, as a consequence of the conduction block in the dorsal root ganglion and probable conduction block in the dorsal root. The M wave recorded from the fourth dorsal interosseus muscle of the hindfoot was normal in amplitude but slightly prolonged in latency and the H reflex was absent. These electrophysiological findings correlated well with the histological findings of inflammation and prominent demyelination in the dorsal root ganglia and dorsal roots with minimal involvement of the proximal spinal nerve and no involvement of the sciatic nerve. It is concluded that the hindlimb ataxia in rats with this form of acute experimental allergic neuritis is due to demyelination-induced nerve conduction block in the dorsal root ganglia and probably in the dorsal roots
The Pathophysiology of Acute Experimental Allergic Encephalomyelitis in the Rabbit
Clinical, histological and electrophysiological studies were performed on rabbits with acute experimental allergic encephalomyelitis (EAE). The clinical features were similar to those previously described, with the notable exception of the new findings of areflexia, respiratory slowing and hypothermia. The histological findings were also similar to those previously reported, with inflammatory demyelinating lesions both in the central and peripheral nervous system, especially the dorsal root ganglia. Electrophysiological studies performed one to nine days after the onset of neurological signs demonstrated conduction block in a high proportion of the large diameter afferents in the lumbosacral and thoracic dorsal root ganglia. Single fibre studies with spike-triggered averaging confirmed the conduction block in the dorsal root ganglia. That the conduction block was due to demyelination was indicated by slowing of conduction in large diameter fibres, normal conduction in unmyelinated fibres and the specific effects of temperature and of the potassium channel blocking agent, 4-aminopyridine. These conduction abnormalities in the peripheral nervous system, focused on the dorsal root ganglia, account for the postural disturbance, hypotonia, ataxia and areflexia in rabbits with EAE. Such conduction block is likely to mask the expression of any lesions of the central nervous system that alone could produce similar signs. The implications of these findings for the human demyelinating diseases are discussed
Binding between the neural cell adhesion molecules axonin-1 and Nr- CAM/Bravo is involved in neuron-glia interaction
Neural cell adhesion molecules of the immunoglobulin superfamily mediate cellular interactions via homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated cell-surface glycoproteins. Here we report on an interaction between axonin-1 and Nr-CAM/Bravo. In search for novel ligands of axonin-1, fluorescent polystyrene microspheres conjugated with axonin-1 were found to bind to peripheral glial cells from dorsal root ganglia. By antibody blockage experiments an axonin-1 receptor on the glial cells was identified as Nr-CAM. The specificity of the interaction was confirmed with binding studies using purified axonin-1 and Nr-CAM. In cultures of dissociated dorsal root ganglia antibodies against axonin-1 and Nr-CAM perturbed the formation of contacts between neurites and peripheral glial cells. Together, these results implicate a binding between axonin-1 of the neuritic and Nr-CAM of the glial cell membrane in the early phase of axon ensheathment in the peripheral nervous system
TRPV1 mRNA is Differentially Expressed in Different Vertebral Levels of Rat Dorsal Root Ganglia Following Sciatic Nerve Injury
Transient Receptor Potential Vanilloid 1 plays an important role in the pain pathway. TRPV1 is expressed in primary afferent nociceptors and acts as a transducer for noxious stimuli; including capsaicin, toxins and noxious heat. TRPV1 protein expression increases in inflammatory and neuropathic pain models, but transcriptional regulation of TRPV1 remains unclear. In the present study, TRPV1 mRNA levels were measured in Dorsal Root Ganglia pertaining to the third, fourth and fifth vertebral levels of the lumbar spine following chronic constriction injury of the sciatic nerve in rats. TRPV1 mRNA levels are shown to increase in lumbar dorsal root ganglia in response to chronic CCI-induced neuropathic pain. Moreover, the magnitude of change in TRPV1 mRNA level varies with dorsal root ganglia level. These novel findings show that injury-induced TRPV1 mRNA levels are regulated in response to chronic pain, and strengthen interest in this channel as a specific target for pain therapy
Conditional deletion of Pip5k1c in sensory ganglia and effects on nociception and inflammatory sensitization
Phosphatidylinositol 4-phosphate 5-kinase type 1 gamma (Pip5k1c) generates phosphatidylinositol 4,5-bisphosphate, also known as PI(4,5)P2 or PIP2. Many pronociceptive signaling pathways and receptor tyrosine kinases signal via PIP2 hydrolysis. Previously, we found that pain signaling and pain sensitization were reduced in Pip5k1c+/− global heterozygous knockout mice. Here, we sought to evaluate the extent to which dorsal root ganglia selective deletion of Pip5k1c affected nociception in mice. Initially, we crossed sensory neuron-selective Advillin-Cre mice with a conditional Pip5k1c knockout (cKO) allele (Pip5k1cfl/fl). However, these mice displayed an early onset proprioceptive deficit. To bypass this early onset phenotype, we used two different tamoxifen-inducible Cre lines (Brn3a-Cre-ERT2 and Advillin-Cre-ERT2) to conditionally delete Pip5k1c in adults. Tamoxifen induced high efficiency deletion of PIP5K1C in dorsal root ganglia and slightly reduced PIP5K1C in spinal cord and brain in Brn3a-Cre-ERT2 × Pip5k1cfl/fl (Brn3a cKO) mice while PIP5K1C was selectively deleted in dorsal root ganglia with no changes in spinal cord or brain in Advillin-Cre-ERT2 × Pip5k1cfl/fl (Advil cKO) mice. Acute thermosensation and mechanosensation were not altered in either line relative to wild-type mice. However, thermal hypersensitivity and mechanical allodynia recovered more rapidly in Brn3a cKO mice, but not Advil cKO mice, following hind paw inflammation. These data collectively suggest that PIP5K1C regulates nociceptive sensitization in more regions of the nervous system than dorsal root ganglia alone
Regulation of RXRγ gene expression in embryonic chick cells
Neural crest cells differentiate into a broad range of cell types, including neurons and glial cells of the peripheral nervous system, pigment cells and the mesenchymal cells that give rise to the craniofacial skeleton. An important problem concerns the mechanisms by which gene expression is regulated in neural crest cells differentiating along these different lineages. We have previously shown that expression of the nuclear receptor RXRγ is maintained in neural crest-derived cells in the cranial ganglia, dorsal root ganglia and sympathetic ganglia. However, RXRγ expression is switched off in the cranial neural crest-derived mesenchymal cells of the facial primordia. I have analysed the mechanisms that regulate this differential expression. From the previously isolated chick RXRγ genomic clone, I mapped the promoter used in neural crest-derived cells and showed that this promoter is also used to direct RXRγ gene expression in the developing chick neural retina. I constructed a series of luciferase reporter plasmids using fragments of the RXRγ gene promoter region, and performed transient transfection assays in cultures of cells isolated from developing chick facial primordia, dorsal root ganglia and neural retina. This enabled the identification of sequences that direct high levels of luciferase gene expression in neural retina cells, but not in facial mesenchyme or dorsal root ganglia cells. I analysed these sequences in terms of DNA-protein interactions
Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain
- …