9,907 research outputs found
Mercapturate Pathway in the Tubulocentric Perspective of Diabetic Kidney Disease
BACKGROUND: The recent growing evidence that the proximal tubule underlies the
early pathogenesis of diabetic kidney disease (DKD) is unveiling novel and
promising perspectives. This pathophysiological concept links tubulointerstitial
oxidative stress, inflammation, hypoxia, and fibrosis with the progression of
DKD. In this new angle for DKD, the prevailing molecular mechanisms on proximal
tubular cells emerge as an innovative opportunity for prevention and management
of DKD as well as to improve diabetic dysmetabolism.
SUMMARY: The mercapturate pathway (MAP) is a classical metabolic detoxification
route for xenobiotics that is emerging as an integrative circuitry detrimental to
resolve tubular inflammation caused by endogenous electrophilic species. Herein
we review why and how it might underlie DKD. Key Messages: MAP is a hallmark of
proximal tubular cell function, and cysteine-S-conjugates might represent targets
for early intervention in DKD. Moreover, the biomonitoring of urinary
mercapturates from metabolic inflammation products might be relevant for the
implementation of preventive/management strategies in DKD.info:eu-repo/semantics/publishedVersio
Urinary excretion of RAS, BMP, and WNT pathway components in diabetic kidney disease.
Abstract The renin-angiotensin system (RAS), bone morphogenetic protein (BMP), and WNT pathways are involved in pathogenesis of diabetic kidney disease (DKD). This study characterized assays for urinary angiotensinogen (AGT), gremlin-1, and matrix metalloproteinase 7 (MMP-7), components of the RAS, BMP, and WNT pathways and examined their excretion in DKD. We measured urine AGT, gremlin-1, and MMP-7 in individuals with type 1 diabetes and prevalent DKD (n = 20) or longstanding (n = 61) or new-onset (n = 10) type 1 diabetes without DKD. These urine proteins were also quantified in type 2 DKD (n = 11) before and after treatment with candesartan. The utilized immunoassays had comparable inter- and intra-assay and intraindividual variation to assays used for urine albumin. Median (IQR) urine AGT concentrations were 226.0 (82.1, 550.3) and 13.0 (7.8, 20.0) μg/g creatinine in type 1 diabetes with and without DKD, respectively (P < 0.001). Median (IQR) urine gremlin-1 concentrations were 48.6 (14.2, 254.1) and 3.6 (1.7, 5.5) μg/g, respectively (P < 0.001). Median (IQR) urine MMP-7 concentrations were 6.0 (3.8, 10.5) and 1.0 (0.4, 2.9) μg/g creatinine, respectively (P < 0.001). Treatment with candesartan was associated with a reduction in median (IQR) urine AGT/creatinine from 23.5 (1.6, 105.1) to 2.0 (1.4, 13.7) μg/g, which did not reach statistical significance. Urine gremlin-1 and MMP-7 excretion did not decrease with candesartan. In conclusion, DKD is characterized by markedly elevated urine AGT, MMP-7, and gremlin-1. AGT decreased in response to RAS inhibition, suggesting that this marker reflects therapeutic response. Urinary components of the RAS, BMP, and WNT pathways may identify risk of DKD and aid development of novel therapeutics
Diabetic kidney disease. new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on "the natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function"
Recent epidemiological studies have disclosed heterogeneity in diabetic kidney disease (DKD). In addition to the classical albuminuric phenotype, two new phenotypes have emerged, i.e., “nonalbuminuric renal impairment” and “progressive renal decline”, suggesting that DKD progression toward end-stage kidney disease in diabetic patients may occur through two distinct pathways heralded by a progressive increase in albuminuria and decline in renal function independent of albuminuria, respectively. Besides the natural history of DKD, also the management of hyperglycemia in patients with type 2 diabetes and reduced renal function has profoundly changed in the last two decades. New anti-hyperglycemic drugs have become available for treatment of these individuals and the lowest estimated glomerular filtration rate safety thresholds for some of the old agents have been reconsidered. This joint document of the Italian Diabetes Society (SID) and the Italian Society of Nephrology (SIN) reviews the natural history of DKD in the light of the recent epidemiological literature and provides updated recommendations on anti-hyperglycemic treatment with non-insulin agents in DKD patients
Recommended from our members
Urine Complement Proteins and the Risk of Kidney Disease Progression and Mortality in Type 2 Diabetes.
ObjectiveWe examined the association of urine complement proteins with progression to end-stage renal disease (ESRD) or death in people with type 2 diabetes and proteinuric diabetic kidney disease (DKD).Research design and methodsUsing targeted mass spectrometry, we quantified urinary abundance of 12 complement proteins in a predominantly Mexican American cohort with type 2 diabetes and proteinuric DKD (n = 141). The association of urine complement proteins with progression to ESRD or death was evaluated using time-to-event analyses.ResultsAt baseline, median estimated glomerular filtration rate (eGFR) was 54 mL/min/1.73 m2 and urine protein-to-creatinine ratio 2.6 g/g. Sixty-seven participants developed ESRD or died, of whom 39 progressed to ESRD over a median of 3.1 years and 40 died over a median 3.6 years. Higher urine CD59, an inhibitor of terminal complement complex formation, was associated with a lower risk of ESRD (hazard ratio [HR] [95% CI per doubling] 0.50 [0.29-0.87]) and death (HR [95% CI] 0.56 [0.34-0.93]), after adjustment for demographic and clinical covariates, including baseline eGFR and proteinuria. Higher urine complement components 4 and 8 were associated with lower risk of death (HR [95% CI] 0.57 [0.41-0.79] and 0.66 [0.44-0.97], respectively); higher urine factor H-related protein 2, a positive regulator of the alternative complement pathway, was associated with greater risk of death (HR [95% CI] 1.61 [1.05-2.48]) in fully adjusted models.ConclusionsIn a largely Mexican American cohort with type 2 diabetes and proteinuric DKD, urine abundance of several complement and complement regulatory proteins was strongly associated with progression to ESRD and death
Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease
The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice
FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism
A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function
A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems
Symplectic integration algorithms are well-suited for long-term integrations
of Hamiltonian systems because they preserve the geometric structure of the
Hamiltonian flow. However, this desirable property is generally lost when
adaptive timestep control is added to a symplectic integrator. We describe an
adaptive-timestep symplectic integrator that can be used if the Hamiltonian is
the sum of kinetic and potential energy components and the required timestep
depends only on the potential energy (e.g. test-particle integrations in fixed
potentials). In particular, we describe an explicit, reversible, symplectic,
leapfrog integrator for a test particle in a near-Keplerian potential; this
integrator has timestep proportional to distance from the attracting mass and
has the remarkable property of integrating orbits in an inverse-square force
field with only "along-track" errors; i.e. the phase-space shape of a Keplerian
orbit is reproduced exactly, but the orbital period is in error by O(1/N^2),
where N is the number of steps per period.Comment: 24 pages, 3 figures, submitted to Astronomical Journal; minor errors
in equations and one figure correcte
Assessments of macroscopicity for quantum optical states
With the slow but constant progress in the coherent control of quantum
systems, it is now possible to create large quantum superpositions. There has
therefore been an increased interest in quantifying any claims of
macroscopicity. We attempt here to motivate three criteria which we believe
should enter in the assessment of macroscopic quantumness: The number of
quantum fluctuation photons, the purity of the states, and the ease with which
the branches making up the state can be distinguished
- …