52,190 research outputs found

    Metal containing polymers from cyclic tetrameric phenylphosphonitrilamides Patent

    Get PDF
    Chemical synthesis of thermally stable organometallic polymers with divalent metal ion and tetraphenylphosphonitrilic unit

    A New Strategy to Stabilize Oxytocin in Aqueous Solutions: I. The Effects of Divalent Metal Ions and Citrate Buffer

    Get PDF
    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl2, MgCl2, or ZnCl2 and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca2+, Mg2+, or Zn2+, while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions

    Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants

    Get PDF
    Terpene synthases (TPS) require divalent metal ion co-factors, typically magnesium, that are bound by a canonical DDXXD motif, as well as a putative second, seemingly less well conserved and understood (N/D)DXX(S/T)XXXE motif. Given the role of the Ser/Thr side chain hydroxyl group in ligating one of the three catalytically requisite divalent metal ions and the loss of catalytic activity upon substitution with Ala, it is surprising that Gly is frequently found in this ‘middle’ position of the putative second divalent metal binding motif in plant TPS. Here we report mutational investigation of this discrepancy in a model plant diterpene cyclase, abietadiene synthase from Abies grandis (AgAS). Substitution of the corresponding Thr in AgAS with Ser or Gly decreased catalytic activity much less than substitution with Ala. We speculate that the ability of Gly to partially restore activity relative to Ala substitution for Ser/Thr stems from the associated reduction in steric volume enabling a water molecule to substitute for the hydroxyl group from Ser/Thr, potentially in a divalent metal ion coordination sphere. In any case, our results are consistent with the observed conservation pattern for this putative second divalent metal ion binding motif in plant TPS

    Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis

    Get PDF
    HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg(2+) ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn(2+), Zn(2+) and Cd(2+), followed by Mg(2+), Co(2+) and Ni(2+), while Cu(2+), Yb(2+) and Hg(2+) were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg(2+), Mn(2+) and Ba(2+)), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition

    Physicochemecal studies of some hexamethylenetetramine metal(II) complexes

    Get PDF
    Divalent metal (Mn, Co, Ni) complexes of the ligand hexamethylenetetramine (HMTA, C6H12N4) with sulfate, nitrate and fluoroborate as counter ions have been synthesized in ethanolic media. Whereas the complexes with BF4- and NO3- as counter ions have two molecules of hexamethylenetetramine, those with SO42- as counter ion contain just one molecule of hexamethylenetetramine. The complexes have been characterized by elemental analyses, infrared and visible spectroscopy and room temperature magnetic susceptibility measurements. The results suggest octahedral coordination in which the central metal ion is bonded to hexamethylenetetramine and water molecules. KEY WORDS: Divalent metal (Mn, Co, Ni) complexes, Hexamethylenetetramine, Sulfate as counter ion, Nitrate as counter ion, Fluoroborate as counter ion  Bull. Chem. Soc. Ethiop. 2004, 18(2), 143-148

    Divalent Metal Binding Properties of the Methionyl Aminopeptidase from \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    The metal-binding properties of the methionyl aminopeptidase from Escherichia coli (MetAP) were investigated. Measurements of catalytic activity as a function of added Co(II) and Fe(II) revealed that maximal enzymatic activity is observed after the addition of only 1 equiv of divalent metal ion. Based on these studies, metal binding constants for the first metal binding event were found to be 0.3 ± 0.2 μM and 0.2 ± 0.2 μM for Co(II)- and Fe(II)-substituted MetAP, respectively. Binding of excess metal ions (\u3e50 equiv) resulted in the loss of ∼50% of the catalytic activity. Electronic absorption spectral titration of a 1 mM sample of MetAP with Co(II) provided a binding constant of 2.5 ± 0.5 mM for the second metal binding site. Furthermore, the electronic absorption spectra of Co(II)-loaded MetAP indicated that both metal ions reside in a pentacoordinate geometry. Consistent with the absorption data, electron paramagnetic resonance (EPR) spectra of [CoCo(MetAP)] also indicated that the Co(II) geometries are not highly constrained, suggesting that each Co(II) ion in MetAP resides in a pentacoordinate geometry. EPR studies on [CoCo(MetAP)] also revealed that at pH 7.5 there is no significant spin-coupling between the two Co(II) ions, though a small proportion (∼5%) of the sample exhibited detectable spin−spin interactions at pH values \u3e 9.6. EPR studies on [Fe(III)_(MetAP)] and [Fe(III)Fe(III)(MetAP)] also suggested no spin-coupling between the two metal ions. 1H nuclear magnetic resonance (NMR) spectra of [Co(II)_(MetAP)] in both H2O and D2O buffer indicated that the first metal binding site contains the only active-site histidine residue, His171. Mechanistic implications of the observed binding properties of divalent metal ions to the MetAP from E. coli are discussed

    Effect of micelles on flotation of metal ions

    Get PDF
    A study of the anionic surfactant, sodium dodecyl sulfate (SDS), and the dependency of the adsorption of divalent metal counterions such as copper and zinc at the air-water interface on its concentration in the solution, was undertaken in order to better understand the process of ion flotation. The study is divided into two broad categories, the first of which consists of the evaluation of the extent of aggregation of the surfactant molecules into micelles, and the effect of the divalent metal counterion concentration on this aggregation and on the critical concentration at which micelles start forming (cmc). This was accomplished using well established light scattering and surface tension techniques, which were also used in the investigation of the influence of surfactant concentration on the precipitation of lead dodecyl sulfate. The adsorption of divalent counterions at air-water interfaces comprised the second category of this research, and it was conducted using conventional equilibrium surface tension measurements and an established foaming technique. The following conclusions were drawn: 1) The adsorption of divalent metal counterions at air-water interfaces, and therefore, the flotation of these ions is largely independent of the type of divalent counterion. 2) Optimum flotation conditions for divalent counterions occur in surfactant solutions containing no micelles. Since the stability of the foam, a desirable feature in ion flotation, increases with the concentration of the surfactant, the best conditions for ion flotation occur at the cmc. 3) The competing adsorption of the divalent metal counterions at the micellar shear interface is primarily responsible for the decrease in the adsorption of these counterions at the air-water interface. 4) The competing adsorption of divalent lead counterions at the micellar shear interface is apparently responsible for the increase in the solubility of Pb(DS)₂ in concentrated sodium dodecyl sulfate (SDS) solutions. It was possible to propose a theory, based on the potential calculations of the electrical double layers of flat and spherical surfaces, which correlated most of the observations made in this research --Abstract, page ii-iii

    Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV

    Get PDF
    It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme

    Human topoisomerase IIα uses a two-metal-ion mechanism for DNA cleavage

    Get PDF
    The DNA cleavage reaction of human topoisomerase IIα is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3′-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3′-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIα mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3′-oxygen

    The C-terminal domain of the 2b protein of Cucumber mosaic virus is stabilized by divalent metal ion coordination

    Get PDF
    The main function of the 2b protein of Cucumber mosaic virus (CMV) is binding permanently the double stranded siRNA molecules in the suppression process of post-transcriptional gene silencing (PTGS). The crystal structure of the homologue Tomato aspermy virus (TAV) 2b protein is known, but without the C-terminal domain. The biologically active form is a tetramer: four 2b protein molecules and two siRNA duplexes. Regarding the complete 2b protein structure, we performed a molecular dynamics (MD) simulation of the whole siRNA–2b ribonucleoprotein complex. Unfortunately, the C-terminal domain is proved to be partially unstructured. Multiple sequence alignment showed a well conserved motif between residues 94 and 105. The negatively charged residues of the C-terminal domain are supposed to take part in coordination of a divalent metal ion and stabilize the three-dimensional structure of the C-terminal domain. MD simulations were performed on the detached C-terminal domains (aa 65–110). 0.15 M MgCl2, CaCl2, FeCl2 and ZnCl2 salt concentrations were used in the screening simulations. Among the tested divalent metal ions Mg2+ proved to be very successful because Asp95, Asp96 and Asp98 forms a quasi-permanent Mg2+ binding site. However the control computations have resulted in any (at least) divalent metal ion remains in the binding site after replacement of the bound Mg2+ ion. A quadruple mutation (Rs2DDTD/95–98/AAAA) was introduced into the position of the putative divalent metal ion binding site to analyze the biological relevance of molecular modeling derived hypothesis. The plant inoculation experiments proved that the movement of the mutant virus is slower and the symptoms are milder comparing to the wild type virus. These results demonstrate that the quadruple mutation weakens the stability of the 2b protein tetramer–siRNA ribonucleoprotein complex
    corecore