921,687 research outputs found
Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study
The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design
Estimating a pressure dependent thermal conductivity coefficient with applications in food technology
In this paper we introduce a method to estimate a pressure dependent thermal
conductivity coefficient arising in a heat diffusion model with applications in
food technology. To address the known smoothing effect of the direct problem,
we model the uncertainty of the conductivity coefficient as a hierarchical
Gaussian Markov random field (GMRF) restricted to uniqueness conditions for the
solution of the inverse problem established in Fraguela et al. Furthermore, we
propose a Single Variable Exchange Metropolis-Hastings algorithm to sample the
corresponding conditional probability distribution of the conductivity
coefficient given observations of the temperature. Sensitivity analysis of the
direct problem suggests that large integration times are necessary to identify
the thermal conductivity coefficient. Numerical evidence indicates that a
signal to noise ratio of roughly 1000 suffices to reliably retrieve the thermal
conductivity coefficient
Internal thermal noise in the LIGO test masses : a direct approach
The internal thermal noise in LIGO's test masses is analyzed by a new
technique, a direct application of the Fluctuation-Dissipation Theorem to
LIGO's readout observable, (longitudinal position of test-mass face,
weighted by laser beam's Gaussian profile). Previous analyses, which relied on
a normal-mode decomposition of the test-mass motion, were valid only if the
dissipation is uniformally distributed over the test-mass interior, and they
converged reliably to a final answer only when the beam size was a
non-negligible fraction of the test-mass cross section. This paper's direct
analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam
sizes. In the domain of validity of the previous analysis, the two methods give
the same answer for , the spectral density of thermal noise, to within
expected accuracy. The new analysis predicts that thermal noise due to
dissipation concentrated in the test mass's front face (e.g. due to mirror
coating) scales as , by contrast with homogeneous dissipation, which
scales as ( is the beam radius); so surface dissipation could
become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur
Experimental analysis of direct thermal methane cracking
The analysis of the viability of Hydrogen production without CO2 emissions is one of the most challenging activities that have been initiated for a sustainable energy supply. As one of the tracks to fulfil such objective, direct methane cracking has been analysed experimentally to assess the scientific viability and reaction characterization in a broad temperature range, from 875 to 1700 ?C. The effect of temperature, sweeping/carrier gas fraction proposed in some concepts, methane flow rate, residence time, and tube material and porosity has been analysed. The aggregation of carbon black particles to the reaction tube is the main technological show-stopper that has been identified
Study of second breakdown in power transistors using infrared techniques
Infrared thermal maps pinpoint exact location where second breakdown will occur before phenomenon happens and before physical damage develops at hot spot. Crystal structure analysis at that point determines cause of fault. Absolute power of radiation emitted from hot spot is direct indication of voltage level at which second breakdown occur
Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments
The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments
A Thermal Analysis of Direct Driven Hydraulics
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior
- …