119,893 research outputs found

    Dipolar Bose-Einstein condensate in a ring or in a shell

    Full text link
    We study properties of a trapped dipolar Bose-Einstein condensate (BEC) in a circular ring or a spherical shell using the mean-field Gross-Pitaevskii equation. In the case of the ring-shaped trap we consider different orientations of the ring with respect to the polarization direction of the dipoles. In the presence of long-range anisotropic dipolar and short-range contact interactions, the anisotropic density distribution of the dipolar BEC in both traps is discussed in detail. The stability condition of the dipolar BEC in both traps is illustrated in phase plot of dipolar and contact interactions. We also study and discuss the properties of a vortex dipolar BEC in these traps

    2-Dimensional Dipolar Scattering

    Full text link
    We characterize the long range dipolar scattering in 2-dimensions. We use the analytic zero energy wavefunction including the dipolar interaction; this solution yields universal dipolar scattering properties in the threshold regime. We also study the semi-classical dipolar scattering and find universal dipolar scattering for this energy regime. For both energy regimes, we discuss the validity of the universality and give physical examples of the scattering.Comment: 4 pages 4 figure

    A dipolar droplet bound in a trapped Bose-Einstein condensate

    Full text link
    We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by inter-species contact interaction in a trapped non-dipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped non-dipolar 87Rb BEC with a variable number of 164Dy atoms and the inter-species scattering length. A trapped non-dipolar BEC of a fixed number of atoms can only bind a dipolar droplet containing atoms less than a critical number for the inter-species scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using the numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture

    Control of dipolar relaxation in external fields

    Full text link
    We study dipolar relaxation in both ultra-cold thermal and Bose-condensed chromium atom gases. We show three different ways to control dipolar relaxation, making use of either a static magnetic field, an oscillatory magnetic field, or an optical lattice to reduce the dimensionality of the gas from 3D to 2D. Although dipolar relaxation generally increases as a function of a static magnetic field intensity, we find a range of non-zero magnetic field intensities where dipolar relaxation is strongly reduced. We use this resonant reduction to accurately determine the S=6 scattering length of chromium atoms: a6=103±4a0a_6 = 103 \pm 4 a_0. We compare this new measurement to another new determination of a6a_6, which we perform by analysing the precise spectroscopy of a Feshbach resonance in d-wave collisions, yielding a6=102.5±0.4a0a_6 = 102.5 \pm 0.4 a_0. These two measurements provide by far the most precise determination of a6a_6 to date. We then show that, although dipolar interactions are long-range interactions, dipolar relaxation only involves the incoming partial wave l=0l=0 for large enough magnetic field intensities, which has interesting consequences on the stability of dipolar Fermi gases. We then study ultra-cold chromium gases in a 1D optical lattice resulting in a collection of independent 2D gases. We show that dipolar relaxation is modified when the atoms collide in reduced dimensionality at low magnetic field intensities, and that the corresponding dipolar relaxation rate parameter is reduced by a factor up to 7 compared to the 3D case. Finally, we study dipolar relaxation in presence of radio-frequency (rf) oscillating magnetic fields, and we show that both the output channel energy and the transition amplitude can be controlled by means of rf frequency and Rabi frequency.Comment: 25 pages, 17 figure

    Collective modes of monolayer, bilayer, and multilayer fermionic dipolar liquid

    Full text link
    Motivated by recent experimental advances in creating polar molecular gases in the laboratory, we theoretically investigate the many body effects of two-dimensional dipolar systems with the anisotropic and 1/r31/r^3 dipole-dipole interactions. We calculate collective modes of 2D dipolar systems, and also consider spatially separated bilayer and multilayer superlattice dipolar systems. We obtain the characteristic features of collective modes in quantum dipolar gases. We quantitatively compare the modes of these dipolar systems with the modes of the extensively studied usual two-dimensional electron systems, where the inter-particle interaction is Coulombic.Comment: 11 pages, 7 figure

    Dipolar Relaxation in an ultra-cold Gas of magnetically trapped chromium atoms

    Full text link
    We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 μB\mu_B results in an event rate coefficient for dipolar relaxation processes of up to 3.210113.2\cdot10^{-11} cm3^{3}s1^{-1} at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations. This very general approach can be applied to a large variety of dipolar gases.Comment: 9 pages, 9 figure

    Stability of trapped degenerate dipolar Bose and Fermi gases

    Full text link
    Trapped degenerate dipolar Bose and Fermi gases of cylindrical symmetry with the polarization vector along the symmetry axis are only stable for the strength of dipolar interaction below a critical value. In the case of bosons, the stability of such a dipolar Bose-Einstein condensate (BEC) is investigated for different strengths of contact and dipolar interactions using variational approximation and numerical solution of a mean-field model. In the disk shape, with the polarization vector perpendicular to the plane of the disk, the atoms experience an overall dipolar repulsion and this fact should contribute to the stability. However, a complete numerical solution of the dynamics leads to the collapse of a strongly disk-shaped dipolar BEC due to the long-range anisotropic dipolar interaction. In the case of fermions, the stability of a trapped single-component degenerate dipolar Fermi gas is studied including the Hartree-Fock exchange and Brueckner-Goldstone correlation energies in the local density approximation valid for a large number of atoms. Estimates for the maximum allowed number of polar Bose and Fermi molecules in BEC and degenerate Fermi gas are given

    Rotational properties of non-dipolar and dipolar Bose-Einstein condensates confined in annular potentials

    Full text link
    We investigate the rotational response of both non-dipolar and dipolar Bose-Einstein condensates confined in an annular potential. For the non-dipolar case we identify certain critical rotational frequencies associated with the formation of vortices. For the dipolar case, assuming that the dipoles are aligned along some arbitrary and tunable direction, we study the same problem as a function of the orientation angle of the dipole moment of the atoms.Comment: 5 pages, 4 figure

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure
    corecore