154,502 research outputs found

    Casimir-Lifshitz Interaction between Dielectrics of Arbitrary Geometry: A Dielectric Contrast Perturbation Theory

    Full text link
    The general theory of electromagnetic--fluctuation--induced interactions in dielectric bodies as formulated by Dzyaloshinskii, Lifshitz, and Pitaevskii is rewritten as a perturbation theory in terms of the spatial contrast in (imaginary) frequency dependent dielectric function. The formulation can be used to calculate the Casimir-Lifshitz forces for dielectric objects of arbitrary geometry, as a perturbative expansion in the dielectric contrast, and could thus complement the existing theories that use perturbation in geometrical features. We find that expansion in dielectric contrast recasts the resulting Lifshitz energy into a sum of the different many-body contributions. The limit of validity and convergence properties of the perturbation theory is discussed using the example of parallel semi-infinite objects for which the exact result is known.Comment: 9 pages, 5 (combined) figures; to appear in Phys. Rev.

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϵs\epsilon_s of spheres is lower than the dielectric constant ϵb\epsilon_b of the background medium. If ϵs>ϵb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϵb/ϵs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde

    Local dielectric spectroscopy of near-surface glassy polymer dynamics

    Full text link
    A non-contact scanning-probe-microscopy method was used to probe local near-surface dielectric susceptibility and dielectric relaxation in poly-vinyl-acetate (PVAc) near the glass transition. Dielectric spectra were measured from 10-4 Hz to 102 Hz as a function of temperature. The measurements probed a 20 nm thick layer below the free-surface of a bulk film. A small (4 K) reduction in glass transition temperature and moderate narrowing of the distribution of relaxation times was found. In contrast to results for ultra-thin-films confined on or between metallic electrodes, no reduction in the dielectric strength was found, inconsistent with the immobilization of slower modes.Comment: submitte

    Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast

    Full text link
    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries

    First-principles Theory of Nonlocal Screening in Graphene

    Get PDF
    Using the quasiparticle self-consistent GW (QSGW) and local-density (LD) approximations, we calculate the q-dependent static dielectric function, and derive an effective 2D dielectric function corresponding to screening of point charges. In the q-to-0 limit, the 2D function is found to scale approximately as the square root of the macroscopic dielectric function. Its value is ~4, a factor approximately 1.5 larger than predictions of Dirac model. Both kinds of dielectric functions depend strongly on q, in contrast with the Dirac model. The QSGW approximation is shown to describe QP levels very well, with small systematic errors analogous to bulk sp semiconductors. Local-field effects are rather more important in graphene than in bulk semiconductors.Comment: 9 pages, 2 figure

    Magnetic Field Dependent Tunneling in Glasses

    Full text link
    We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both, the complete lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure
    • …
    corecore