4,220 research outputs found
Impact of energy dissipation on interface shapes and on rates for dewetting from liquid substrates
We revisit the fundamental problem of liquid-liquid dewetting and perform a
detailed comparison of theoretical predictions based on thin-film models with
experimental measurements obtained by atomic force microscopy (AFM).
Specifically, we consider the dewetting of a liquid polystyrene (PS) layer from
a liquid polymethyl methacrylate (PMMA) layer, where the thicknesses and the
viscosities of PS and PMMA layers are similar. The excellent agreement of
experiment and theory reveals that dewetting rates for such systems follow no
universal power law, in contrast to dewetting scenarios on solid substrates.
Our new energetic approach allows to assess the physical importance of
different contributions to the energy-dissipation mechanism, for which we
analyze the local flow fields and the local dissipation rates.Comment: 15 pages, 5 figure
Suppression of Dewetting in Pulsed Laser Melting of Thin Metallic Films on Silica
Pulsed excimer laser projection irradiation has been successfully applied to completely melt and resolidify encapsulated elemental metal films of Au, Cu, Cr, and Ni directly on amorphous SiO2 substrates. A combination of narrow irradiated lines and appropriate SiO2 capping layers was used to obtain films that do not dewet when fully melted. Detailed processing maps were generated for Au and Ni, while equivalent trends for Cu and Cr were also noted. These systems were analyzed for common behaviors. These behaviors have been generalized into a basic process map that may apply more generally. Experimental parameters and sample preparation criteria are presented to realize such resolidification studies in other metal systems
Dewetting dynamics of stressed viscoelastic thin polymer films
Ultrathin polymer films that are produced e.g. by spin-coating are believed
to be stressed since polymers are 'frozen in' into out-of-equilibrium
configurations during this process. In the framework of a viscoelastic thin
film model, we study the effects of lateral residual stresses on the dewetting
dynamics of the film. The temporal evolution of the height profiles and the
velocity profiles inside the film as well as the dissipation mechanisms are
investigated in detail. Both the shape of the profiles and the importance of
frictional dissipation vs. viscous dissipation inside the film are found to
change in the course of dewetting. The interplay of the non-stationary
profiles, the relaxing initial stress and changes in the dominance of the two
dissipation mechanisms caused by nonlinear friction with the substrate is
responsible for the rich behavior of the system. In particular, our analysis
sheds new light on the occurrence of the unexpected maximum in the rim width
obtained recently in experiments on PS-PDMS systems.Comment: 11 pages, 10 figure
Investigation of pulsed laser induced dewetting in nanoscopic metal films
Hydrodynamic pattern formation (PF) and dewetting resulting from pulsed laser
induced melting of nanoscopic metal films have been used to create spatially
ordered metal nanoparticle arrays with monomodal size distribution on
SiO_{\text{2}}/Si substrates. PF was investigated for film thickness h\leq7 nm
< laser absorption depth \sim11 nm and different sets of laser parameters,
including energy density E and the irradiation time, as measured by the number
of pulses n. PF was only observed to occur for E\geq E_{m}, where E_{m} denotes
the h-dependent threshold energy required to melt the film. Even at such small
length scales, theoretical predictions for E_{m} obtained from a
continuum-level lumped parameter heat transfer model for the film temperature,
coupled with the 1-D transient heat equation for the substrate phase, were
consistent with experimental observations provided that the thickness
dependence of the reflectivity of the metal-substrate bilayer was incorporated
into the analysis. The spacing between the nanoparticles and the particle
diameter were found to increase as h^{2} and h^{5/3} respectively, which is
consistent with the predictions of the thin film hydrodynamic (TFH) dewetting
theory. These results suggest that fast thermal processing can lead to novel
pattern formation, including quenching of a wide range of length scales and
morphologies.Comment: 36 pages, 11 figures, 1 tabl
Generic morphologies of viscoelastic dewetting fronts
A simple model is put forward which accounts for the occurrence of certain
generic dewetting morphologies in thin liquid coatings. It demonstrates that by
taking into account the elastic properties of the coating, a morphological
phase diagram may be derived which describes the observed structures of
dewetting fronts. It is demonstrated that dewetting morphologies may also serve
to determine nanoscale rheological properties of liquids.Comment: 4 pages, 2 figure
Dewetting of thin polymer films: Influence of interface evolution
The dewetting dynamics of ultrathin polymer films, e.g. in the model system
of polystyrene on a polydimethylsiloxane-covered substrate, exhibits
interesting behavior like a fast decay of the dewetting velocity and a maximum
in the width of the built-up rim in the course of time. These features have
been recently ascribed to the relaxation of residual stresses in the film that
stem from the nonequilibrium preparation of the samples. Recent experiments by
Coppee et al. on PS with low molecular weight, where such stresses could not be
evidenced, showed however similar behavior. By scaling arguments and numerical
solution of a thin film viscoelastic model we show that the maximum in the
width of the rim can be caused by a temporal evolution of the friction
coefficient (or equivalently of the slip length), for which we discuss two
possible mechanisms. In addition, the maximum in the width is affected by the
sample age. As a consequence, knowing the temporal behavior of friction (or
slip length) in principle allows to measure the aging dynamics of a
polymer-polymer interface by simple dewetting experiments.Comment: 6 pages, 2 figure
- …