59,238 research outputs found
Copper(I)-Phosphinite Complexes in Click Cycloadditions: Three-Component Reactions and Preparation of 5-Iodotriazoles
© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.The remarkable activity displayed by copper(I)–phosphinite complexes of general formula [CuBr(L)] in two challenging cycloadditions is reported: a) the one-pot azidonation/cycloaddition of boronic acids, NaN3, and terminal alkynes; b) the cycloaddition of azides and iodoalkynes. These air-stable catalysts led to very good results in both cases and the expected triazoles could be isolated in pure form under ‘Click-suitable’ conditions
Discovery of new mutually orthogonal bioorthogonal cycloaddition pairs through computational screening.
Density functional theory (DFT) calculations and experiments in tandem led to discoveries of new reactivities and selectivities involving bioorthogonal sydnone cycloadditions. Dibenzocyclooctyne derivatives (DIBAC and BARAC) were identified to be especially reactive dipolarophiles, which undergo the (3+2) cycloadditions with N-phenyl sydnone with the rate constant of up to 1.46 M-1 s-1. Most signifcantly, the sydnone-dibenzocyclooctyne and norbornene-tetrazine cycloadditions were predicted to be mutually orthogonal. This was validated experimentally and used for highly selective fluorescence labeling of two proteins simultaneously
Intramolecular Imino Diels-Alder Reaction: Progress toward the Synthesis of Uncialamycin
We herein described an intramolecular imino Diels-Alder reaction promoted with BF3.OEt2/DDQ affording substituted quinolines. Using this procedure, we prepared the chiral quitioline moiety of the uncialamycin, a new enediyne natural product
Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey
With the goal of identifying alkyne-like reagents for use in click chemistry, but without Cu catalysts, we used B3LYP density function theory (DFT) to investigate the trends in activation barriers for the 1,3-dipolar cycloadditions of azides with various cyclooctyne, dibenzocyclooctyne, and azacyclooctyne compounds. Based on these trends, we find monobenzocyclooctyne-based reagents that are predicted to have dramatically improved reactivity over currently employed reagents
On the strong difference in reactivity of acyclic and cyclic diazodiketones with thioketones: experimental results and quantum-chemical interpretation
The 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl compounds (DDC) and thioketones preferably occurs with Z,Econformers
and leads to the formation of transient thiocarbonyl ylides in two stages. The thermodynamically favorable further
transformation of C=S ylides bearing at least one acyl group is identified as the 1,5-electrocyclization into 1,3-oxathioles. However,
in the case of diazomalonates, the dominating process is 1,3-cyclization into thiiranes followed by their spontaneous desulfurization
yielding the corresponding alkenes. Finally, carbocyclic diazodiketones are much less reactive under similar conditions due to
the locked cyclic structure and are unfavorable for the 1,3-dipolar cycloaddition due to the Z,Z-conformation of the diazo molecule.
This structure results in high, positive values of the Gibbs free energy change for the first stage of the cycloaddition process.A. V. I. thanks the Saint Petersburg State University for financial
support of his stay at the University of Łódź with Prof. G.
Mloston (order 1831/1; 02.06.2011). A. S. M. acknowledges the
Saint Petersburg State University for financial support in the
form of a postdoctoral fellowship (No. 12.50.1562.2013). G. M.
acknowledges support by the National Science Center (PLCracow)
within the Grant Maestro–3 (Dec–2012/06/A/ST5/
00219). The calculations were performed with the assistance of
the Saint Petersburg State University Computer Center and the
Chemistry Department of Saint Petersburg State University
Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium
Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.
Cycloaddition Chemistry of a Silylene‐Nickel Complex toward Organic π‐Systems: From Reversibility to C−H Activation
The versatile cycloaddition chemistry of the Si−Ni multiple bond in the acyclic (amido)(chloro)silylene→Ni0 complex 1, [(TMSL)ClSi→Ni(NHC)2] (TMSL=N(SiMe3)Dipp; Dipp=2,6‐iPr2C6H4; NHC=C[(iPr)NC(Me)]2), toward unsaturated organic substrates is reported, which is both reminiscent of and expanding on the reactivity patterns of classical Fischer and Schrock carbene–metal complexes. Thus, 1:1 reaction of 1 with aldehydes, imines, alkynes, and even alkenes proceed to yield [2+2] cycloaddition products, leading to a range of four‐membered metallasilacycles. This cycloaddition is in fact reversible for ethylene, whereas addition of an excess of this olefin leads to quantitative sp2‐CH bond activation, via a 1‐nickela‐4‐silacyclohexane intermediate. These results have been supported by DFT calculations giving insights into key mechanistic aspects.DFG, 390540038, EXC 2008: UniSysCatTU Berlin, Open-Access-Mittel - 202
Recommended from our members
Concerted [4 + 2] and Stepwise (2 + 2) Cycloadditions of Tetrafluoroethylene with Butadiene: DFT and DLPNO-UCCSD(T) Explorations.
Tetrafluoroethylene and butadiene form the 2 + 2 cycloadduct under kinetic control, but the Diels-Alder cycloadduct is formed under thermodynamic control. Borden and Getty showed that the preference for 2 + 2 cycloaddition is due to the necessity for syn-pyramidalization of the two CF2 groups in the 4 + 2 transition state. We have explored the full potential energy surface for the concerted and stepwise reactions of tetrafluoroethylene and butadiene with density functional theory, DFT (B3LYP and M06-2X), DLPNO-UCCSD(T), and CASSCF-NEVPT2 methods and with the distortion/interaction-activation strain model to explain the energetics of different pathways. The 2 + 2 cycloadduct is formed by an anti-transition state followed by two rotations and a final bond formation transition state. Energetics are compared to the reaction of maleic anhydride and ethylene
- …