139,958 research outputs found
Relative importance of crystal field versus bandwidth to the high pressure spin transition in transition metal monoxides
The crystal field splitting and d bandwidth of the 3d transition metal
monoxides MnO, FeO, CoO and NiO are analyzed as a function of pressure within
density functional theory. In all four cases the 3d bandwidth is significantly
larger than the crystal field splitting over a wide range of compressions. The
bandwidth actually increases more as pressure is increased than the crystal
field splitting. Therefore the role of increasing bandwidth must be considered
in any explanation of a possible spin collapse that these materials may exhibit
under pressure.Comment: 7 pages, 4 figure
Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions
Competition of crystal field splitting and Hund's rule coupling in magnetic
metal-insulator transitions of half-filled two-orbital Hubbard model is
investigated by multi-orbital slave-boson mean field theory. We show that with
the increase of Coulomb correlation, the system firstly transits from a
paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott
insulator, or a nonmagnetic orbital insulator, depending on the competition of
crystal field splitting and the Hund's rule coupling. The different AFM Mott
insulator, PM metal and orbital insulating phase are none, partially and fully
orbital polarized, respectively. For a small and a finite crystal
field, the orbital insulator is robust. Although the system is nonmagnetic, the
phase boundary of the orbital insulator transition obviously shifts to the
small regime after the magnetic correlations is taken into account. These
results demonstrate that large crystal field splitting favors the formation of
the orbital insulating phase, while large Hund's rule coupling tends to destroy
it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure
Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure
We present an tight-binding model for the calculation of the
electronic and optical properties of wurtzite semiconductor quantum dots (QDs).
The tight-binding model takes into account strain, piezoelectricity, spin-orbit
coupling and crystal-field splitting. Excitonic absorption spectra are
calculated using the configuration interaction scheme. We study the electronic
and optical properties of InN/GaN QDs and their dependence on structural
properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure
THEORY OF SPIN-LATTICE RELAXATION OF COPPER IN A TUTTON SALT CRYSTAL
A calculation of the relaxation of Cu2+ in potassium zinc Tutton salt has been made on a crystal field model. The magnitude and anisotropy predicted are in good agreement with experiment. The results imply that the tetragonal field splitting δ is about 7700 cm-1 and the cubic field splitting Δ0 about 8700 cm-1
- …