14,111 research outputs found

    A novel synthesis of 2'-hydroxy-1',3'-xylyl crown ethers

    Get PDF
    Six novel 2' - hydroxy - 1',3' - xylyl crown ethers (8a–e and 13)1 have been synthesized utilizing the allyl group to protect the OH function during the cyclization reaction. The macrocycles 6a-e were formed in yields of 26 to 52%, by intermolecular reaction of 4 - chloro - 2,6 - bis(bromomethyl) - 1 - (2 - propenyloxy)benzene (5) with polyethylene glycols; 6a was also obtained by an intramolecular cyclization reaction of monotosylate 14.\ud A 30-membered ring with a 2' - hydroxy - 1',3' - xylyl sub-unit was obtained in 87% yield by reaction of ditosylate 9 with bis [2 - (o - hydroxyphenoxy)ethyl]ether (11) in the presence of cesium fluoride. The synthesis of crown ethers with a 2' - hydroxy - 1',3' - xylyl sub-unit (1c–e, H for CH3) by demethylation of the corresponding 2'-methoxy crown ethers 1c–e with lithium iodide were unsuccessful; it would appear that the demethylation reaction is restricted to 15- and 18-membered rings. One of the 2' - hydroxy - 1',3' - xylyl crown ethers 8d forms a crystalline 1:1-complex with water

    Effect of base–acid properties of the mixtures of water with methanol on the solution enthalpy of selected cyclic ethers in this mixture at 298.15 K

    Get PDF
    The enthalpies of solution of cyclic ethers: 1,4- dioxane, 12-crown-4 and 18-crown-6 in the mixture of water and methanol have been measured within the whole mole fraction range at T = 298.15 K. Based on the obtained data, the effect of base–acid properties of water– methanol mixtures on the solution enthalpy of cyclic ethers in these mixtures has been analyzed. The solution enthalpy of cyclic ethers depends on acid properties of water– methanol mixtures in the range of high and medium water contents in the mixture. Based on the analysis performed, it can be assumed that in the mixtures of high methanol contents, cyclic ethe

    Catalysis by alkali and alkaline-earth metal ions in nucleophilic attack of methoxide ion on crown ethers bearing an intra-annular acetoxy group

    Get PDF
    Rates of reaction of methoxide ion with crown ethers bearing an intra-annular acetoxy group are markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ions with transition states than with reactants.\ud \ud Rates of reactions of methoxide ion with crown ethers bearing an intra-annular acetoxy group markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ion with transition state than with reactants

    Synthesis of Novel Bibrachial Lariat Ethers (BiBLEs) Containing [1,2,4]Triazolo[3,4-b][1,3,4]Thiadiazines

    Get PDF
    A practical and regioselective method for the synthesis of cis-diastereomers of bibrachial lariat ethers (BiBLEs) bearing ester and amide groups is reported. The novel bibrachial lariat ethers (BiBLEs) 3a–d with neutral side chains were prepared by reaction of the corresponding aza-crown macrocycles 1a–b with ethyl chloroacetate and chloroacetamide.KEYWORDS macrocycle, bibrachial, lariat ethers, aza-crown, 1,3,4-thiadiazines

    Computerized conductometric determination of stability constants of complexes of crown ethers with alkali metal salts and with neutral molecules in polar solvents

    Get PDF
    A computerized conductometric procedure for the determination of stability constants of the complexes of crown ethers (15-crown-5, benzo-15-crown-5 and 12-crown-4) with alkali metal salts in polar solvents is described, based on a microcomputer-controlled titration system. For the control of the experiments from software, a modular computer program was written in FORTH computer language. The procedure is especially suitable for the study of 1:2 metal ion/ligand complexes, which occur frequently with the compounds used. For the study of the interaction between crown ethers and neutral molecules, an indirect procedure is outlined

    Direct synthetic routes to functionalised crown ethers

    Get PDF
    open5noAcknowledgements Financial support from the European Union’s H2020 Research and Innovation Program (FET-OPEN “MAGNIFY”No. 801378 and ERC AdG “LEAPs”No. 692981) is gratefully acknowledged.Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.openNicoli, Federico; Baroncini, Massimo; Silvi, Serena; Groppi, Jessica; Credi, AlbertoNicoli, Federico; Baroncini, Massimo; Silvi, Serena; Groppi, Jessica; Credi, Albert

    Synthesis and Cytotoxicity of Silicon and Germanium Containing Pyridine Oxime O-Ethers

    Get PDF
    Silicon and germanium containing pyridine aldoxime, ketoxime and amidoxime O-ethers have been prepared using phase transfer catalytic systems oxime alkyl halide solid KOH 18-crown-6 benzene and oxime alkyl halide solid K2CO3 or Cs2CO3 18-crown-6 toluene. Cytotoxic activity of silicon and germanium containing pyridine oxime O-ethers was tested in vitro on two monolayer tumor cell lines: MG- 22A (mouse hepatoma) and HT-1080 (human fibrosarcoma). O-[3-Yriethylsilylpropyl]- and O-[3-(1-methyl- 1-silacyclopentyl)propyl] oximes of pyridine aldehydes and ketones exhibit high cytotoxicity. Presence of methyl group in the pyridine ring considerably decreased activity of amidoxime O-ethers. Oxime ethers containing two elements are essentially inactive. For 2-acetylpyridine oxime ethers the activity increases in order of alkyl substituents: Et3GeCH2CH2SiMe2CH2 < Et3SiCH2CH2CH2 < (CH2)4SiCH2CH2CH2. Cytotoxicity of ketoxime O-ethers is considerably lower in comparison with aldoxime O-ethers

    Solid-liquid (S-L) an liquid (L-L) phase transfer of salts via ‘encapsulated’ crown ether cation complexes

    Get PDF
    In recent years crown ethers have been successfully used for the transport of salts, both inorganic and organic, from an aqueous phase to organic solvents. Our work has extended the applicability of these crown ethers to the transport of salts from the solid state into solution both aqueous and nonaqueous. For this purpose a number of novel crown ethers have been synthesized that have in addition to a polar ‘cavity’ formed by donor atoms of the macrocyclic ring, (an) additional anionic functional group(s) covalently bound to the macroring.\ud \ud The first part of the lecture will deal with the design of such macrocycles that can encapsulate a spherical cation in a flexible cavity or that can encapsulate non-spherical cations. e.g. uronium cations, in a relatively rigid cavity.\ud \ud Together with the synthesis results of complexation studies using 1H NMR spectroscopy will be discussed.\ud \ud In the second part the use of crown ethers for the transport of sparingly soluble salts from the solid state into aqueous solutions will be dealt with. The emphasis will be placed on theoretical models that can be used to described such phase transfer processes and to predict thermodynamic stability constants of complexes required for solubilisation.\ud \ud The lecture will conclude with a comparison of these models with experimental results
    corecore