2,776,021 research outputs found
Quantum control in foundational experiments
We describe a new class of experiments designed to probe the foundations of
quantum mechanics. Using quantum controlling devices, we show how to attain a
freedom in temporal ordering of the control and detection of various phenomena.
We consider wave-particle duality in the context of quantum-controlled and the
entanglement-assisted delayed-choice experiments. Then we discuss a
quantum-controlled CHSH experiment and measurement of photon's transversal
position and momentum in a single set-up.Comment: Contribution to the Proceedings of the workshop Horizons of Quantum
Physics, Taipei, 14-18.10.2012. Published version: two new authors, modified
and streamlined presentation, new section on quantum control in complementary
position/momentum measurement
Some control design experiments with HIFOO
A new MATLAB package called HIFOO was recently proposed for H-infinity
fixed-order controller design. This document illustrates how some standard
controller design examples can be solved with this software
Feedback control optimisation of ESR experiments
Numerically optimised microwave pulses are used to increase excitation
efficiency and modulation depth in electron spin resonance experiments
performed on a spectrometer equipped with an arbitrary waveform generator. The
optimisation procedure is sample-specific and reminiscent of the magnet
shimming process used in the early days of nuclear magnetic resonance -- an
objective function (for example, echo integral in a spin echo experiment) is
defined and optimised numerically as a function of the pulse waveform vector
using noise-resilient gradient-free methods. We found that the resulting shaped
microwave pulses achieve higher excitation bandwidth and better echo modulation
depth than the pulse shapes used as the initial guess. Although the method is
theoretically less sophisticated than simulation based quantum optimal control
techniques, it has the advantage of being free of the linear response
approximation; rapid electron spin relaxation also means that the optimisation
takes only a few seconds. This makes the procedure fast, convenient, and easy
to use. An important application of this method is at the final stage of the
implementation of theoretically designed pulse shapes: compensation of pulse
distortions introduced by the instrument. The performance is illustrated using
spin echo and out-of-phase electron spin echo envelope modulation experiments.
Interface code between Bruker SpinJet arbitrary waveform generator and Matlab
is included in versions 2.2 and later of the Spinach library
Experiments in rights control : expression and enforcement
The Internet has transformed our long-term perception on working, entertainment, and living rapidly. We can now work comfortably in our own home, shop for our groceries without stepping outside the house, and enjoy high-quality entertaining digital content, such as music or lm. This digital content can easily be produced and copied with available digital technologies; and the content can be distributed and shared through the Internet almost effortlessly. This phenomenon has created a wide variety of usage scenarios, and has also induced huge loss to the lm and music\ud
industry through piracy. To solve this problem, we have to protect the\ud
digital content by controlling how the users are using the content. Thus, rights control has emerged as a potential solution
Flexible manipulator control experiments and analysis
Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches
Asymptotic Theory of Rerandomization in Treatment-Control Experiments
Although complete randomization ensures covariate balance on average, the
chance for observing significant differences between treatment and control
covariate distributions increases with many covariates. Rerandomization
discards randomizations that do not satisfy a predetermined covariate balance
criterion, generally resulting in better covariate balance and more precise
estimates of causal effects. Previous theory has derived finite sample theory
for rerandomization under the assumptions of equal treatment group sizes,
Gaussian covariate and outcome distributions, or additive causal effects, but
not for the general sampling distribution of the difference-in-means estimator
for the average causal effect. To supplement existing results, we develop
asymptotic theory for rerandomization without these assumptions, which reveals
a non-Gaussian asymptotic distribution for this estimator, specifically a
linear combination of a Gaussian random variable and a truncated Gaussian
random variable. This distribution follows because rerandomization affects only
the projection of potential outcomes onto the covariate space but does not
affect the corresponding orthogonal residuals. We also demonstrate that,
compared to complete randomization, rerandomization reduces the asymptotic
sampling variances and quantile ranges of the difference-in-means estimator.
Moreover, our work allows the construction of accurate large-sample confidence
intervals for the average causal effect, thereby revealing further advantages
of rerandomization over complete randomization
Predictive Control of Autonomous Kites in Tow Test Experiments
In this paper we present a model-based control approach for autonomous flight
of kites for wind power generation. Predictive models are considered to
compensate for delay in the kite dynamics. We apply Model Predictive Control
(MPC), with the objective of guiding the kite to follow a figure-of-eight
trajectory, in the outer loop of a two level control cascade. The tracking
capabilities of the inner-loop controller depend on the operating conditions
and are assessed via a frequency domain robustness analysis. We take the
limitations of the inner tracking controller into account by encoding them as
optimisation constraints in the outer MPC. The method is validated on a kite
system in tow test experiments.Comment: The paper has been accepted for publication in the IEEE Control
Systems Letters and is subject to IEEE Control Systems Society copyright.
Upon publication, the copy of record will be available at
http://ieeexplore.ieee.or
- …