199,907 research outputs found
Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids
Janus colloids propelled by light, e.g., thermophoretic particles, offer
promising prospects as artificial microswimmers. However, their swimming
behavior and its dependence on fluid properties and fluid-colloid interactions
remain poorly understood. Here, we investigate the behavior of a thermophoretic
Janus colloid in its own temperature gradient using numerical simulations. The
dissipative particle dynamics method with energy conservation is used to
investigate the behavior in non-ideal and ideal-gas like fluids for different
fluid-colloid interactions, boundary conditions, and temperature-controlling
strategies. The fluid-colloid interactions appear to have a strong effect on
the colloid behavior, since they directly affect heat exchange between the
colloid surface and the fluid. The simulation results show that a reduction of
the heat exchange at the fluid-colloid interface leads to an enhancement of
colloid's thermophoretic mobility. The colloid behavior is found to be
different in non-ideal and ideal fluids, suggesting that fluid compressibility
plays a significant role. The flow field around the colloid surface is found to
be dominated by a source-dipole, in agreement with the recent theoretical and
simulation predictions. Finally, different temperature-control strategies do
not appear to have a strong effect on the colloid's swimming velocity
Colloid-colloid and colloid-wall interactions in driven suspensions
We investigate the non-equilibrium fluid structure mediated forces between
two colloids driven through a suspension of mutually non-interacting Brownian
particles as well as between a colloid and a wall in stationary situations. We
solve the Smoluchowski equation in bispherical coordinates as well as with a
method of reflections, both in linear approximation for small velocities and
numerically for intermediate velocities, and we compare the results to a
superposition approximation considered previously. In particular we find an
enhancement of the friction (compared to the friction on an isolated particle)
for two colloids driven side by side as well as for a colloid traveling along a
wall. The friction on tailgating colloids is reduced. Colloids traveling side
by side experience a solute induced repulsion while tailgating colloids are
attracted to each other.Comment: 8 Pages, 8 figure
Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation
Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich
and colloid-poor regions. Gelation results when interconnected colloid-rich
regions solidify. We show that this occurs when these regions undergo a glass
transition, leading to dynamic arrest of the spinodal decomposition. The
characteristic length scale of the gel decreases with increasing quench depth,
and the nonergodicity parameter exhibits a pronounced dependence on scattering
vector. Mode coupling theory gives a good description of the dynamics, provided
we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio
Permselectivity of the glomerular wall examined with iron compound tracer
Rat kidney endothelial cell morphology was examined
after introducing iron colloid particles of positive or negative charge
to investigate the relationship between the electric charge and permeation
through the glomerular capillary. The kidneys were first
perfused with Hanks' solution through the renal arteries and then
with iron colloid particles of positive or negative charge. The iron
colloid particles of positive charge were prepared with ferric chloride
and cacodylate solutions, and the negative particles were prepared
with iron chondroitin sulfate colloid particles. The iron colloid particles
of positive charge adhered to the surface of endothelial cells of
the glomerular capillaries, as well as the arterioles, capillaries and
venules. Some particles were taken up by pinocytosis, accumulated
in the glomerular basement membrane and appeared in the urinary
spaces passing through the filtration slits of podocytes. Iron colloid
particles of negative charge neither adhered to the endothelial cells
nor were taken by the cells. They did not permeate into the urinary
spaces. Permeation into the tubular lumen through the peritubular
venules was not observed with particles of positive or negative charge.</p
Solvent mediated interactions between model colloids and interfaces: A microscopic approach
We determine the solvent mediated contribution to the effective potentials
for model colloidal or nano- particles dispersed in a binary solvent that
exhibits fluid-fluid phase separation. Using a simple density functional theory
we calculate the density profiles of both solvent species in the presence of
the `colloids', which are treated as external potentials, and determine the
solvent mediated (SM) potentials. Specifically, we calculate SM potentials
between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface,
and (iii) a colloid and a planar wall with an adsorbed wetting film. We
consider three different types of colloidal particles: colloid A which prefers
the bulk solvent phase rich in species 2, colloid C which prefers the solvent
phase rich in species 1, and `neutral' colloid B which has no strong preference
for either phase, i.e. the free energies to insert the colloid into either of
the coexisting bulk phases are almost equal. When a colloid which has a
preference for one of the two solvent phases is inserted into the disfavored
phase at statepoints close to coexistence a thick adsorbed `wetting' film of
the preferred phase may form around the colloids. The presence of the adsorbed
film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical
Physic
Structural Responses of Quasi-2D Colloid Fluids to Excitations Elicited by Nonequilibrium Perturbations
We investigate the response of a dense monodisperse quasi-two-dimensional
(q2D) colloid suspension when a particle is dragged by a constant velocity
optical trap. Consistent with microrheological studies of other geometries, the
perturbation induces a leading density wave and trailing wake, and we use
Stokesian Dynamics (SD) simulations to parse direct colloid-colloid and
hydrodynamic interactions. We go on to analyze the underlying individual
particle-particle collisions in the experimental images. The displacements of
particles form chains reminiscent of stress propagation in sheared granular
materials. From these data, we can reconstruct steady-state dipolar flow
patterns that were predicted for dilute suspensions and previously observed in
granular analogs to our system. The decay of this field differs, however, from
point Stokeslet calculations, indicating that the finite size of the colloids
is important. Moreover, there is a pronounced angular dependence that
corresponds to the surrounding colloid structure, which evolves in response to
the perturbation. Put together, our results show that the response of the
complex fluid is highly anisotropic owing to the fact that the effects of the
perturbation propagate through the structured medium via chains of
colloid-colloid collisions
Solvent coarsening around colloids driven by temperature gradients
Using mesoscopic numerical simulations and analytical theory we investigate
the coarsening of the solvent structure around a colloidal particle emerging
after a temperature quench of the colloid surface. Qualitative differences in
the coarsening mechanisms are found, depending on the composition of the binary
liquid mixture forming the solvent and on the adsorption preferences of the
colloid. For an adsorptionwise neutral colloid, as function of time the phase
being next to its surface alternates. This behavior sets in on the scale of the
relaxation time of the solvent and is absent for colloids with strong
adsorption preferences. A Janus colloid, with a small temperature difference
between its two hemispheres, reveals an asymmetric structure formation and
surface enrichment around it, even if the solvent is within its one-phase
region and if the temperature of the colloid is above the critical demixing
temperature of the solvent. Our phenomenological model turns out to
capture recent experimental findings according to which, upon laser
illumination of a Janus colloid and due to the ensuing temperature gradient
between its two hemispheres, the surrounding binary liquid mixture develops a
concentration gradient.Comment: 8 pages, 4 figure
Fluid-fluid demixing curves for colloid-polymer mixtures in a random colloidal matrix
We study fluid-fluid phase separation in a colloid-polymer mixture adsorbed
in a colloidal porous matrix close to the \theta -point. For this purpose we
consider the Asakura-Oosawa model in the presence of a quenched matrix of
colloidal hard spheres. We study the dependence of the demixing curve on the
parameters that characterize the quenched matrix, fixing the polymer-to-colloid
size ratio to 0.8. We find that, to a large extent, demixing curves depend only
on a single parameter f, which represents the volume fraction which is
unavailable to the colloids. We perform Monte Carlo simulations for volume
fractions f equal to 40% and 70%, finding that the binodal curves in the
polymer and colloid packing-fraction plane have a small dependence on disorder.
The critical point instead changes significantly: for instance, the colloid
packing fraction at criticality increases with increasing f. Finally, we
observe for some values of the parameters capillary condensation of the
colloids: a bulk colloid-poor phase is in chemical equilibrium with a
colloid-rich phase in the matrix.Comment: 26 pages, 8 figures. In publication in Molecular Physics, special
volume dedicated to Luciano Reatto for his 70th birthda
From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry
Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer
mixtures confined between two parallel repulsive structureless walls are
presented and analyzed in the light of current theories on capillary
condensation and interface localization transitions. Choosing a polymer to
colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to
D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used;
phase transitions are analyzed via finite size scaling, as in previous work on
bulk systems and under confinement between identical types of walls. Unlike the
latter work, inequivalent walls are used here: while the left wall has a
hard-core repulsion for both polymers and colloids, at the right wall an
additional square-well repulsion of variable strength acting only on the
colloids is present. We study how the phase separation into colloid-rich and
colloid-poor phases occurring already in the bulk is modified by such a
confinement. When the asymmetry of the wall-colloid interaction increases, the
character of the transition smoothly changes from capillary condensation-type
to interface localization-type. The critical behavior of these transitions is
discussed, as well as the colloid and polymer density profiles across the film
in the various phases, and the correlation of interfacial fluctuations in the
direction parallel to the confining walls. The experimental observability of
these phenomena also is briefly discussed.Comment: 36 pages, 15 figure
A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid
A mesoscopic colloid model is developed in which a spherical colloid is
represented by many interacting sites on its surface. The hydrodynamic
interactions with thermal fluctuations are taken accounts in full using
Dissipative Particle Dynamics, and the electrostatic interactions are simulated
using Particle-Particle-Particle Mesh method. This new model is applied to
investigate the electrophoretic mobility of a charged colloid under an external
electric field, and the influence of salt concentration and colloid charge are
systematically studied. The simulation results show good agreement with
predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance
Computing in Science & Engineering '1
- …