80,382 research outputs found
Chromosome Oscillations in Mitosis
Successful cell division requires a tight regulation of chromosome motion via
the activity of molecular motors. Many of the key players at the origin of the
forces generating the movement have been identified, but their spatial and
temporal organization remains elusive. The protein complex Kinetochore on the
chromosome associates with microtubules emanating from one of the spindle poles
and drives the chromosome toward the pole. Chromokinesin motors on the
chromosome arms also interact with microtubules, ejecting the chromosome away
from the pole. In animal cells, a monooriented chromosome (associated to a
single pole) periodically switches between phases of poleward and away from the
pole movement[, a behavior tentatively explained so far by the existence of a
complex switching mechanism within the kinetochore itself. Here we show that
the interplay between the morphology of the mitotic spindle and the collective
kinetics of chromokinesins can account for the highly non-linear periodic
chromosome motion. Our analysis provides a natural explanation for the origin
of chromosome directional instability and for the mechanism by which
chromosomes feel their position in space.Comment: http://hogarth.pct.espci.fr/~pierre
Translating particulate hexavalent chomium-induced chromosome instability, loss of homologous recombination repair and targeting of RAD51 from human lung fibroblasts to human bronchial epithelial cells.
Particulate hexavalent chromium [Cr(VI)] is a well-established human lung carcinogen. RAD51, a key protein in homologous recombination repair pathway, is inhibited after prolonged exposure to Cr(VI), leading to an increase in chromosome instability after prolonged exposures in human lung fibroblasts. chromosome instability is the proposed driver of Cr(VI) carcinogenesis. Since tumors from chromate workers develop from epithelial cells, we sought to translate these findings from human bronchial fibroblasts to human bronchial epithelial cells. We hypothesized Cr(VI) inhibits RAD51 after prolonged exposure leading to an increase in chromosome instability in human bronchial epithelial cells (BEP2D). We characterized the cytotoxicity and measured intracellular Cr ion levels, chromosome instability and RAD51 response. Altogether, the data show, in BEP2D cells, Cr(VI) induces DNA double strand breaks and targets RAD51 leading to an increase in chromosome instability, successfully translating the outcomes seen in human bronchial fibroblasts to human bronchial epithelial cells
Separase prevents genomic instability by controlling replication fork speed
Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis
Precocious activation of APC/C-Cdh1 at pre-anaphase causes genome instability
Faithful chromosome segregation and thereby accurate gene transmission are crucial for all organisms. Until proper attachment of the mitotic spindle to the kinetochore is established, the ubiquitin ligase (E3) Cdc20-activated APC/C (anaphase promoting complex/cyclosome) is repressed by the spindle assembly checkpoint (SAC) and sister chromatin cohesion is protected. Mutants defective in SAC fail to arrest at metaphase even in the presence of damaged microtubules. Interestingly, a similar phenomenon occurs in yeast cells defective in Bub2, a negative factor of the mitotic exit network (MEN), which is required for telophase onset, although its precise molecular mechanism is unknown. Here, we show that chromosome missegregation occurs frequently in bub2∆ cells in the presence of damaged microtubules. The loss of Bub2 caused precocious activation of APC/C-Cdh1/Hct1 at pre-anaphase, leading to securin degradation and then separase-mediated cohesin cleavage. Overexpression of CDH1 and CDC14, encoding Cdc14 phosphatase, at pre-anaphase similarly caused chromosome missegregation. Thus, sequential activation of APC/C-Cdc20 and then APC/C-Cdh1 is critical for precise chromosome segregation and precocious activation of APC/C-Cdh1 at pre-anaphase causes genomic instability. Since degradation of human securin is also mediated by APC/C-Cdc20 and APC/C-Cdh1, this study predicts that precocious activation APC/C-Cdh1 in human cells similarly causes genomic instability, and thereby cell death or tumorigenesis
Separase prevents genomic instability by controlling replication fork speed
Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis
Chromosome breakage after G2 checkpoint release
DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain
A role for chromosomal instability in the development of and selection for radioresistant cell variants
Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human–hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF 2 in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. © 2001 Cancer Research Campaign http://www.bjcancer.co
The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer
- …