75,522 research outputs found
Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins
Water molecules and molecular chaperones efficiently help the protein folding
process. Here we describe their action in the context of the energy and
topological networks of proteins. In energy terms water and chaperones were
suggested to decrease the activation energy between various local energy minima
smoothing the energy landscape, rescuing misfolded proteins from conformational
traps and stabilizing their native structure. In kinetic terms water and
chaperones may make the punctuated equilibrium of conformational changes less
punctuated and help protein relaxation. Finally, water and chaperones may help
the convergence of multiple energy landscapes during protein-macromolecule
interactions. We also discuss the possibility of the introduction of protein
games to narrow the multitude of the energy landscapes when a protein binds to
another macromolecule. Both water and chaperones provide a diffuse set of
rapidly fluctuating weak links (low affinity and low probability interactions),
which allow the generalization of all these statements to a multitude of
networks.Comment: 9 pages, 1 figur
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution
NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism
Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.
Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control
Mitochondrial molecular chaperones
After synthesis in the cytosol, most mitochondrial proteins must traverse mitochondrial membranes to reach their functional location. During this process, proteins become unfolded and then refold to attain their native conformation after crossing the lipid bilayers. Mitochondrial molecular chaperones play an essential mechanistic role at various steps of this process. They facilitate presequence translocation, unfolding of the cytosol-localized domains of precursor proteins, movement across the mitochondrial membranes and, finally, folding of newly imported proteins within the matrix
Chaperone driven polymer translocation through Nanopore: spatial distribution and binding energy
Chaperones are binding proteins which work as a driving force to bias the
biopolymer translocation by binding to it near the pore and preventing its
backsliding. Chaperones may have different spatial distribution. Recently we
show the importance of their spatial distribution in translocation and how it
effects on sequence dependency of the translocation time. Here we focus on
homopolymers and exponential distribution. As a result of the exponential
distribution of chaperones, energy dependency of the translocation time will
changed and one see a minimum in translocation time versus effective energy
curve. The same trend can be seen in scaling exponent of time versus polymer
length, (). Interestingly in some special cases e.g.
chaperones of size and with exponential distribution rate of
, the minimum reaches even to amount of less than (). We
explain the possibility of this rare result and base on a theoretical
discussion we show that by taking into account the velocity dependency of the
translocation on polymer length, one could truly predict the amount of this
minimum
Chaperones as integrators of cellular networks: Changes of cellular integrity in stress and diseases
Cellular networks undergo rearrangements during stress and diseases. In
un-stressed state the yeast protein-protein interaction network (interactome)
is highly compact, and the centrally organized modules have a large overlap.
During stress several original modules became more separated, and a number of
novel modules also appear. A few basic functions, such as the proteasome
preserve their central position. However, several functions with high energy
demand, such the cell-cycle regulation loose their original centrality during
stress. A number of key stress-dependent protein complexes, such as the
disaggregation-specific chaperone, Hsp104, gain centrality in the stressed
yeast interactome. Molecular chaperones, heat shock, or stress proteins form
complex interaction networks (the chaperome) with each other and their
partners. Here we show that the human chaperome recovers the segregation of
protein synthesis-coupled and stress-related chaperones observed in yeast
recently. Examination of yeast and human interactomes shows that (1) chaperones
are inter-modular integrators of protein-protein interaction networks, which
(2) often bridge hubs and (3) are favorite candidates for extensive
phosphorylation. Moreover, chaperones (4) become more central in the
organization of the isolated modules of the stressed yeast protein-protein
interaction network, which highlights their importance in the de-coupling and
re-coupling of network modules during and after stress. Chaperone-mediated
evolvability of cellular networks may play a key role in cellular adaptation
during stress and various polygenic and chronic diseases, such as cancer,
diabetes or neurodegeneration.Comment: 13 pages, 3 figures, 1 glossar
Plasmodial Hsp40s: New avenues for antimalarial drug discovery
Malaria, an infectious disease caused by Plasmodium spp, is one of the world\u27s most dangerous diseases, accounting for more than half a million deaths yearly. The long years of co-habitation between the parasite and its hosts (human and mosquito), is a testimony to the parasite’s ability to escape the immune system and develop drug resistance mechanisms. Currently, an important search area for improved pharmacotherapy are molecular chaperones of the heat shock protein family, abundant in Plasmodium falciparum and contributing to its continuous survival and development. Thus far, small molecule inhibitor studies on P. falciparum Hsp70s and Hsp90s have indicated that they are promising antimalarial targets. However, not much attention has been given to Hsp40s as potential antimalarial drug targets. Hsp40s are known to function as chaperones by preventing protein aggregation, and as co-chaperones, by regulating the chaperone activities of Hsp70s to ensure proper protein folding. There are only a limited number of reviews on Hsp40s as drug targets, and the few reviews on plasmodial Hsp40s tend to focus largely on the intra-erythrocytic stage of the parasite life cycle. Therefore, this review will summarize what is known about Hsp40s throughout the malaria parasite life cycle, and critically evaluate their potential to serve as new avenues for antimalarial drug discovery
- …