121,559 research outputs found
Structure of MnO nanoparticles embedded into channel-type matrices
X-ray diffraction experiments were performed on MnO confined in mesoporous
silica SBA-15 and MCM-41 matrices with different channel diameters. The
measured patterns were analyzed by profile analysis and compared to numerical
simulations of the diffraction from confined nanoparticles. From the lineshape
and the specific shift of the diffraction reflections it was shown that the
embedded objects form ribbon-like structures in the SBA-15 matrices with
channels diameters of 47-87 {\AA}, and nanowire-like structures in the MCM-41
matrices with channels diameters of 24-35 {\AA}. In the latter case the
confined nanoparticles appear to be narrower than the channel diameters. The
physical reasons for the two different shapes of the confined nanoparticles are
discussed.Comment: 8 pages, including 9 postscript figures, uses revtex4.cl
Far-Field Plasmonic Resonance Enhanced Nano-Particle Image Velocimetry within a Micro Channel
In this paper, a novel far-field plasmonic resonance enhanced
nanoparticle-seeded Particle Image Velocimetry (nPIV) has been demonstrated to
measure the velocity profile in a micro channel. Chemically synthesized silver
nanoparticles have been used to seed the flow in the micro channel. By using
Discrete Dipole Approximation (DDA), plasmonic resonance enhanced light
scattering has been calculated for spherical silver nanoparticles with
diameters ranging from 15nm to 200nm. Optimum scattering wavelength is
specified for the nanoparticles in two media: water and air. The
diffraction-limited plasmonic resonance enhanced images of silver nanoparticles
at different diameters have been recorded and analyzed. By using standard PIV
techniques, the velocity profile within the micro channel has been determined
from the images.Comment: submitted to Review of Scientific Instrument
Multiple jet impingement heat transfer characteristic: Experimental investigation of in-line and staggered arrays with crossflow
Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction
Computer program MCAP provides for steady state thermal and flow analysis of multiple parallel channels in heat generating solid
Computer program /MCAP/ calculates the temperature distribution in a heat generating solid complicated by nonuniform power and flow distributions between multiple channels. It determines the channel diameters coefficients, the effects of tolerences, the pressure drop at a given flowrate, or the flowrate for a specific pressure drop
Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study
Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type
matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase
transition in contrast to a discontinuous first order transition in the bulk.
The character of the magnetic transition transforms with decreasing channel
diameter, showing the decreasing critical exponent and transition temperature,
however the latter turns out to be above the N\'eel temperature for the bulk.
This enhancement is explained within the framework of Landau theory taking into
consideration the ternary interaction of the magnetic and associated structural
order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl
Theory of cooling by flow through narrow pores
We consider the possibility of adding a stage to a dilution refrigerator to
provide additional cooling by ``filtering out'' hot atoms. Three methods are
considered: 1) Effusion, where holes having diameters larger than a mean-free
path allow atoms to pass through easily; 2) Particle waveguide-like motion
using very narrow channels that greatly restrict the quantum states of the
atoms in a channel. 3) Wall-limited diffusion through channels, in which the
wall scattering is disordered so that local density equilibrium is established
in a channel. We assume that channel dimension are smaller than the mean-free
path for atom-atom interactions. The particle waveguide and the wall-limited
diffusion methods using channels on order of the de Broglie wavelength give
cooling. Recent advances in nano-filters give this method some hope of being
practical.Comment: 10 pages, 3 figures. Corrected typos and made some minor wording
change
Crucial role of side walls for granular surface flows: consequences for the rheology
In this paper we study the steady uniform flows that develop when granular
material is released from a hopper on top of a static pile in a channel. We
more specifically focus on the role of side walls by carrying out experiments
in setup of different widths, from narrow channels 20 particle diameters wide
to channels 600 particle diameters wide. Results show that steady flows on pile
are entirely controlled by side wall effects. A theoretical model, taking into
account the wall friction and based on a simple local constitutive law recently
proposed for other granular flow configurations (GDR MiDi 2004), gives
predictions in quantitative agreement with the measurements. This result gives
new insights in our understanding of free surface granular flows and strongly
supports the relevance of the constitutive law proposed.Comment: a forgotten square root in Appendix B (Eq B4), and corrected
coefficients in Appendix C; 25 pages, 17 figures, published in J. Fluid Mec
Morphology of rain water channelization in systematically varied model sandy soils
We visualize the formation of fingered flow in dry model sandy soils under
different raining conditions using a quasi-2d experimental set-up, and
systematically determine the impact of soil grain diameter and surface wetting
property on water channelization phenomenon. The model sandy soils we use are
random closely-packed glass beads with varied diameters and surface treatments.
For hydrophilic sandy soils, our experiments show that rain water infiltrates
into a shallow top layer of soil and creates a horizontal water wetting front
that grows downward homogeneously until instabilities occur to form fingered
flows. For hydrophobic sandy soils, in contrast, we observe that rain water
ponds on the top of soil surface until the hydraulic pressure is strong enough
to overcome the capillary repellency of soil and create narrow water channels
that penetrate the soil packing. Varying the raindrop impinging speed has
little influence on water channel formation. However, varying the rain rate
causes significant changes in water infiltration depth, water channel width,
and water channel separation. At a fixed raining condition, we combine the
effects of grain diameter and surface hydrophobicity into a single parameter
and determine its influence on water infiltration depth, water channel width,
and water channel separation. We also demonstrate the efficiency of several
soil water improvement methods that relate to rain water channelization
phenomenon, including pre-wetting sandy soils at different level before
rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel
particles as soil modifiers
- …