3,698,092 research outputs found
A cell complex in number theory
Let De_n be the simplicial complex of squarefree positive integers less than
or equal to n ordered by divisibility. It is known that the asymptotic rate of
growth of its Euler characteristic (the Mertens function) is closely related to
deep properties of the prime number system.
In this paper we study the asymptotic behavior of the individual Betti
numbers and of their sum. We show that De_n has the homotopy type of a wedge of
spheres, and that as n tends to infinity: \sum \be_k(\De_n) =
\frac{2n}{\pi^2} + O(n^{\theta}),\;\; \mbox{for all} \theta > \frac{17}{54}.
We also study a CW complex tDe_n that extends the previous simplicial
complex. In tDe_n all numbers up to n correspond to cells and its Euler
characteristic is the summatory Liouville function. This cell complex is shown
to be homotopy equivalent to a wedge of spheres, and as n tends to infinity:
\sum \be_k(\tDe_n) = \frac{n}{3} + O(n^{\theta}),\;\; \mbox{for all} \theta >
\frac{22}{27}.Comment: 16 page
Condition number analysis and preconditioning of the finite cell method
The (Isogeometric) Finite Cell Method - in which a domain is immersed in a
structured background mesh - suffers from conditioning problems when cells with
small volume fractions occur. In this contribution, we establish a rigorous
scaling relation between the condition number of (I)FCM system matrices and the
smallest cell volume fraction. Ill-conditioning stems either from basis
functions being small on cells with small volume fractions, or from basis
functions being nearly linearly dependent on such cells. Based on these two
sources of ill-conditioning, an algebraic preconditioning technique is
developed, which is referred to as Symmetric Incomplete Permuted Inverse
Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the
SIPIC preconditioner in improving (I)FCM condition numbers and in improving the
convergence speed and accuracy of iterative solvers is presented for the
Poisson problem and for two- and three-dimensional problems in linear
elasticity, in which Nitche's method is applied in either the normal or
tangential direction. The accuracy of the preconditioned iterative solver
enables mesh convergence studies of the finite cell method
Solar cell radiation response near the interface of different atomic number materials
The response of cobalt 60 irradiated N/P silicon solar cells was measured as a function of the atomic number of the medium adjacent to the cell and the direction of the gamma ray beam. The interpositioning of various thicknesses of aluminum between the adjacent material and the cell had the effect of moving the cell to various locations in an approximate monatomic numbered medium. Using this technique the solar cell response was determined at various distances from the interface for gold and beryllium. The results were compared with predictions based upon ionization chamber measurements of dose perturbations in aluminum and found to agree within five percent. Ionization chamber data was then used to estimate the influence of various base contact materials
Aphid Prey of \u3ci\u3ePassaloecus Cuspidatus\u3c/i\u3e (Hymenoptera: Sphecidae)
Provisioning activity of Passaloecus cuspidatus extended from 29 May through 6 August 1987. Eighty trap-nests contained 281 provisioned cells containing 9,618 aphids. The average number of aphids per cell was 34.2 and the average number of cells provisioned per day was 0.73. Passaloecus cuspidatus stored the following aphids as provisions: Cinaria sp., Euceraphis sp., Macrosiphum euphorbiae, Myzus sp., Myzus cerasi, Myzus monardae, and Sitobium avenae. The number of aphids provisioned per cell was inversely related to aphid size. The number of aphids provisioned per cell varied signifIcantly (9-74)
Using microelectrode models for real time cell-culture monitoring
This paper proposes a cell-microelectrode model for cell biometry applications, based on the area overlap as main parameter. The model can be applied to cell size identification, cell count, and their extension to cell growth and dosimetry protocols. Experiments performed with comercial electrodes are presented, illustrating a procedure to obtain cell number in both growth and dosimetry processes. Results obtained for the AA8 cell line are promising.Junta de Andalucía P0-TIC-538
Moment-based analysis of biochemical networks in a heterogeneous population of communicating cells
Cells can utilize chemical communication to exchange information and
coordinate their behavior in the presence of noise. Communication can reduce
noise to shape a collective response, or amplify noise to generate distinct
phenotypic subpopulations. Here we discuss a moment-based approach to study how
cell-cell communication affects noise in biochemical networks that arises from
both intrinsic and extrinsic sources. We derive a system of approximate
differential equations that captures lower-order moments of a population of
cells, which communicate by secreting and sensing a diffusing molecule. Since
the number of obtained equations grows combinatorially with number of
considered cells, we employ a previously proposed model reduction technique,
which exploits symmetries in the underlying moment dynamics. Importantly, the
number of equations obtained in this way is independent of the number of
considered cells such that the method scales to arbitrary population sizes.
Based on this approach, we study how cell-cell communication affects population
variability in several biochemical networks. Moreover, we analyze the accuracy
and computational efficiency of the moment-based approximation by comparing it
with moments obtained from stochastic simulations.Comment: 6 pages, 5 Figure
Expression quantitative trait loci are highly sensitive to cellular differentiation state
Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce
Degrees of Freedom and Achievable Rate of Wide-Band Multi-cell Multiple Access Channels With No CSIT
This paper considers a -cell multiple access channel with inter-symbol
interference. The primary finding of this paper is that, without instantaneous
channel state information at the transmitters (CSIT), the sum
degrees-of-freedom (DoF) of the considered channel is
with when the number of users per cell is sufficiently large,
where is the ratio of the maximum channel-impulse-response (CIR) length
of desired links to that of interfering links in each cell. Our finding implies
that even without instantaneous CSIT, \textit{interference-free DoF per cell}
is achievable as approaches infinity with a sufficiently large number
of users per cell. This achievability is shown by a blind interference
management method that exploits the relativity in delay spreads between desired
and interfering links. In this method, all inter-cell-interference signals are
aligned to the same direction by using a discrete-Fourier-transform-based
precoding with cyclic prefix that only depends on the number of CIR taps. Using
this method, we also characterize the achievable sum rate of the considered
channel, in a closed-form expression.Comment: Submitted to IEEE Transactions on Communication
- …