3,698,092 research outputs found

    A cell complex in number theory

    Get PDF
    Let De_n be the simplicial complex of squarefree positive integers less than or equal to n ordered by divisibility. It is known that the asymptotic rate of growth of its Euler characteristic (the Mertens function) is closely related to deep properties of the prime number system. In this paper we study the asymptotic behavior of the individual Betti numbers and of their sum. We show that De_n has the homotopy type of a wedge of spheres, and that as n tends to infinity: \sum \be_k(\De_n) = \frac{2n}{\pi^2} + O(n^{\theta}),\;\; \mbox{for all} \theta > \frac{17}{54}. We also study a CW complex tDe_n that extends the previous simplicial complex. In tDe_n all numbers up to n correspond to cells and its Euler characteristic is the summatory Liouville function. This cell complex is shown to be homotopy equivalent to a wedge of spheres, and as n tends to infinity: \sum \be_k(\tDe_n) = \frac{n}{3} + O(n^{\theta}),\;\; \mbox{for all} \theta > \frac{22}{27}.Comment: 16 page

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method

    Solar cell radiation response near the interface of different atomic number materials

    Get PDF
    The response of cobalt 60 irradiated N/P silicon solar cells was measured as a function of the atomic number of the medium adjacent to the cell and the direction of the gamma ray beam. The interpositioning of various thicknesses of aluminum between the adjacent material and the cell had the effect of moving the cell to various locations in an approximate monatomic numbered medium. Using this technique the solar cell response was determined at various distances from the interface for gold and beryllium. The results were compared with predictions based upon ionization chamber measurements of dose perturbations in aluminum and found to agree within five percent. Ionization chamber data was then used to estimate the influence of various base contact materials

    Aphid Prey of \u3ci\u3ePassaloecus Cuspidatus\u3c/i\u3e (Hymenoptera: Sphecidae)

    Get PDF
    Provisioning activity of Passaloecus cuspidatus extended from 29 May through 6 August 1987. Eighty trap-nests contained 281 provisioned cells containing 9,618 aphids. The average number of aphids per cell was 34.2 and the average number of cells provisioned per day was 0.73. Passaloecus cuspidatus stored the following aphids as provisions: Cinaria sp., Euceraphis sp., Macrosiphum euphorbiae, Myzus sp., Myzus cerasi, Myzus monardae, and Sitobium avenae. The number of aphids provisioned per cell was inversely related to aphid size. The number of aphids provisioned per cell varied signifI­cantly (9-74)

    Using microelectrode models for real time cell-culture monitoring

    Get PDF
    This paper proposes a cell-microelectrode model for cell biometry applications, based on the area overlap as main parameter. The model can be applied to cell size identification, cell count, and their extension to cell growth and dosimetry protocols. Experiments performed with comercial electrodes are presented, illustrating a procedure to obtain cell number in both growth and dosimetry processes. Results obtained for the AA8 cell line are promising.Junta de Andalucía P0-TIC-538

    Moment-based analysis of biochemical networks in a heterogeneous population of communicating cells

    Full text link
    Cells can utilize chemical communication to exchange information and coordinate their behavior in the presence of noise. Communication can reduce noise to shape a collective response, or amplify noise to generate distinct phenotypic subpopulations. Here we discuss a moment-based approach to study how cell-cell communication affects noise in biochemical networks that arises from both intrinsic and extrinsic sources. We derive a system of approximate differential equations that captures lower-order moments of a population of cells, which communicate by secreting and sensing a diffusing molecule. Since the number of obtained equations grows combinatorially with number of considered cells, we employ a previously proposed model reduction technique, which exploits symmetries in the underlying moment dynamics. Importantly, the number of equations obtained in this way is independent of the number of considered cells such that the method scales to arbitrary population sizes. Based on this approach, we study how cell-cell communication affects population variability in several biochemical networks. Moreover, we analyze the accuracy and computational efficiency of the moment-based approximation by comparing it with moments obtained from stochastic simulations.Comment: 6 pages, 5 Figure

    Expression quantitative trait loci are highly sensitive to cellular differentiation state

    Get PDF
    Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce

    Degrees of Freedom and Achievable Rate of Wide-Band Multi-cell Multiple Access Channels With No CSIT

    Full text link
    This paper considers a KK-cell multiple access channel with inter-symbol interference. The primary finding of this paper is that, without instantaneous channel state information at the transmitters (CSIT), the sum degrees-of-freedom (DoF) of the considered channel is β1βK\frac{\beta -1}{\beta}K with β2\beta \geq 2 when the number of users per cell is sufficiently large, where β\beta is the ratio of the maximum channel-impulse-response (CIR) length of desired links to that of interfering links in each cell. Our finding implies that even without instantaneous CSIT, \textit{interference-free DoF per cell} is achievable as β\beta approaches infinity with a sufficiently large number of users per cell. This achievability is shown by a blind interference management method that exploits the relativity in delay spreads between desired and interfering links. In this method, all inter-cell-interference signals are aligned to the same direction by using a discrete-Fourier-transform-based precoding with cyclic prefix that only depends on the number of CIR taps. Using this method, we also characterize the achievable sum rate of the considered channel, in a closed-form expression.Comment: Submitted to IEEE Transactions on Communication
    corecore