415,123 research outputs found
Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells
Because beta-catenin target genes such as cyclin D1 are involved in cell cycle progression, we examined whether beta-catenin has a more pervasive role in normal cell proliferation, even upon stimulation by non-Wnt ligands. Here, we demonstrate that epidermal growth factor (EGF) stimulates T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcriptional activity in nontransformed mammary epithelial cells (MCF-10A) and that its transcriptional activity is essential for EGF-mediated progression through G(1)/S phase. Thus, expression of dominant-negative Tcf4 blocks EGF-mediated Tcf/Lef transcriptional activity and bromodeoxyuridine uptake. In fact, the importance of EGF-mediated Tcf/Lef transcriptional activity for cell cycle progression may lie further upstream at the G(1)/S phase transition. We demonstrate that dominant-negative Tcf4 inhibits a reporter of cyclin D1 promoter activity in a dose-dependent manner. Importantly, dominant-negative Tcf4 suppresses EGF- mediated cell cycle activity specifically by thwarting EGF- mediated Tcf/Lef transcriptional activity, not by broader effects on EGF signaling. Thus, although expression of dominant-negative Tcf4 blocks EGF- mediated TOPFLASH activation, it has no effect on either EGF receptor or ERK phosphorylation, further underscoring the fact that Tcf/ Lef-mediated transcription is essential for cell cycle progression, even when other pro-mitogenic signals are at normal levels. Yet, despite its essential role, Tcf/Lef transcriptional activity alone is not sufficient for cell cycle progression. Serum also stimulates Tcf/ Lef transcriptional activation in MCF-10A cells but is unable to promote DNA synthesis. Taken together, our data support a model wherein EGF promotes Tcf/ Lef transcriptional activity, and this signal is essential but not sufficient for cell cycle activity
Acanthamoeba induces cell-cycle arrest in host cells
Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba–host cell interactions may help in developing novel strategies to treat Acanthamoeba infections
DHX33 transcriptionally controls genes involved in the cell cycle
The RNA helicase DHX33 has been shown to be a critical regulator of cell proliferation and growth. However, the underlying mechanisms behind DHX33 function remain incompletely understood. We present original evidence in multiple cell lines that DHX33 transcriptionally controls the expression of genes involved in the cell cycle, notably cyclin, E2F1, cell division cycle (CDC), and minichromosome maintenance (MCM) genes. DHX33 physically associates with the promoters of these genes and controls the loading of active RNA polymerase II onto these promoters. DHX33 deficiency abrogates cell cycle progression and DNA replication and leads to cell apoptosis. In zebrafish, CRISPR-mediated knockout of DHX33 results in downregulation of cyclin A2, cyclin B2, cyclin D1, cyclin E2, cdc6, cdc20, E2F1, and MCM complexes in DHX33 knockout embryos. Additionally, we found the overexpression of DHX33 in a subset of non-small-cell lung cancers and in Ras-mutated human lung cancer cell lines. Forced reduction of DHX33 in these cancer cells abolished tumor formation in vivo. Our study demonstrates for the first time that DHX33 acts as a direct transcriptional regulator to promote cell cycle progression and plays an important role in driving cell proliferation during both embryo development and tumorigenesis
The ciliary GTPase Arl13b regulates cell migration and cell cycle progression
Acknowledgments We acknowledge Prof. Tamara Caspary from Emory University for kindly providing the cell lines, Linda Duncan from the University of Aberdeen Ian Fraser Cytometry Center for help with flow cytometry. MP was funded by the Scottish Universities Life Science Alliance (SULSA) and the University of Aberdeen. Funding This work was supported by grants from British Council China (Sino-UK higher Education for PhD studies) to YD and CM, The Carnegie Trust for the Universities of Scotland (70190) and The NHS Grampian Endowment Funds (14/09) to BL, and National Natural Science Foundation of China (31528011) to BL and YD.Peer reviewedPostprin
Modelling radiation-induced cell cycle delays
Ionizing radiation is known to delay the cell cycle progression. In
particular after particle exposure significant delays have been observed and it
has been shown that the extent of delay affects the expression of damage such
as chromosome aberrations. Thus, to predict how cells respond to ionizing
radiation and to derive reliable estimates of radiation risks, information
about radiation-induced cell cycle perturbations is required. In the present
study we describe and apply a method for retrieval of information about the
time-course of all cell cycle phases from experimental data on the mitotic
index only. We study the progression of mammalian cells through the cell cycle
after exposure. The analysis reveals a prolonged block of damaged cells in the
G2 phase. Furthermore, by performing an error analysis on simulated data
valuable information for the design of experimental studies has been obtained.
The analysis showed that the number of cells analyzed in an experimental sample
should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and
Environmental Biophysic
Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2; 3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate
Blocking cell cycle progression through CDK4/6 protects against chronic kidney disease
Acute and chronic kidney injuries induce increased cell cycle progression in renal tubules. While increased cell cycle progression promotes repair after acute injury, the role of ongoing tubular cell cycle progression in chronic kidney disease is unknown. Two weeks after initiation of chronic kidney disease, we blocked cell cycle progression at G1/S phase by using an FDA-approved, selective inhibitor of CDK4/6. Blocking CDK4/6 improved renal function and reduced tubular injury and fibrosis in 2 murine models of chronic kidney disease. However, selective deletion of cyclin D1, which complexes with CDK4/6 to promote cell cycle progression, paradoxically increased tubular injury. Expression quantitative trait loci (eQTLs) for CCND1 (cyclin D1) and the CDK4/6 inhibitor CDKN2B were associated with eGFR in genome-wide association studies. Consistent with the preclinical studies, reduced expression of CDKN2B correlated with lower eGFR values, and higher levels of CCND1 correlated with higher eGFR values. CDK4/6 inhibition promoted tubular cell survival, in part, through a STAT3/IL-1β pathway and was dependent upon on its effects on the cell cycle. Our data challenge the paradigm that tubular cell cycle progression is beneficial in the context of chronic kidney injury. Unlike the reparative role of cell cycle progression following acute kidney injury, these data suggest that blocking cell cycle progression by inhibiting CDK4/6, but not cyclin D1, protects against chronic kidney injury
The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line.
The voltage gated potassium (K+) channels Eag and HERG have been implicated in the pathogenesis of various cancers, through association with cell cycle changes and programmed cell death. The role of these channels in the onset and progression of ovarian cancer is unknown. An understanding of mechanism by which Eag and HERG channels affect cell proliferation in ovarian cancer cells is required and therefore we investigated their role in cell proliferation and their effect on the cell cycle and apoptosis of ovarian cancer cells
Recommended from our members
A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression.
Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression
- …