307,756 research outputs found

    Cell biology, SevERing mitochondria

    No full text
    The endoplasmic reticulum is an active participant in the division of another organelle, the mitochondrion

    Evolutionary cell biology: Functional insight from “Endless forms most beautiful”

    Get PDF
    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking

    Open source bioimage informatics for cell biology

    Get PDF
    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery

    Cell biology and immunology of malaria.

    No full text
    Malaria is a vector-borne infectious disease caused by unicellular parasites of the genus Plasmodium. These obligate intracellular parasites have the unique capacity to infect and replicate within erythrocytes, which are terminally differentiated host cells that lack antigen presentation pathways. Prior to the cyclic erythrocytic infections that cause the characteristic clinical symptoms of malaria, the parasite undergoes an essential and clinically silent expansion phase in the liver. By infecting privileged host cells, employing programs of complex life stage conversions and expressing varying immunodominant antigens, Plasmodium parasites have evolved mechanisms to downmodulate protective immune responses against ongoing and even future infections. Consequently, anti-malaria immunity develops only gradually over many years of repeated and multiple infections in endemic areas. The identification of immune correlates of protection among the abundant non-protective host responses remains a research priority. Understanding the molecular and immunological mechanisms of the crosstalk between the parasite and the host is a prerequisite for the rational discovery and development of a safe, affordable, and protective anti-malaria vaccine

    25 years of epidermal stem cell research.

    Get PDF
    This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy

    The developmental cell biology of Trypanosoma brucei

    Get PDF
    Trypanosoma brucei provides an excellent system for studies of many aspects of cell biology, including cell structure and morphology, organelle positioning, cell division and protein trafficking. However, the trypanosome has a complex life cycle in which it must adapt either to the mammalian bloodstream or to different compartments within the tsetse fly. These differentiation events require stage-specific changes to basic cell biological processes and reflect responses to environmental stimuli and programmed differentiation events that must occur within a single cell. The organization of cell structure is fundamental to the trypanosome throughout its life cycle. Modulations of the overall cell morphology and positioning of the specialized mitochondrial genome, flagellum and associated basal body provide the classical descriptions of the different life cycle stages of the parasite. The dependency relationships that govern these morphological changes are now beginning to be understood and their molecular basis identified. The overall picture emerging is of a highly organized cell in which the rules established for cell division and morphogenesis in organisms such as yeast and mammalian cells do not necessarily apply. Therefore, understanding the developmental cell biology of the African trypanosome is providing insight into both fundamentally conserved and fundamentally different aspects of the organization of the eukaryotic cell

    Visualisation of the information resources for cell biology

    Get PDF
    Intelligent multimodal interfaces can facilitate scientists in utilising available information resources. Combining scientific visualisations with interactive and intelligent tools can help create a “habitable” information space. Development of such tools remains largely iterative. We discuss an ongoing implementation of intelligent interactive visualisation of information resources in cell biology
    corecore