113,045 research outputs found
Targeting the muscle for the treatment and prevention of hepatic encephalopathy
Muscle mass loss or sarcopenia is a principle component of malnutrition which prevails in 65–90% of patients with end-stage liver disease [1]. Intuitively, the roots of malnutrition play a precipitating role in muscle catabolism. Undernutrition frequently occurs in cirrhosis since an inadequate diet is compounded by a hypermetabolic energy demand. However, multiple other factors contribute to the pathogenesis of malnutrition including malabsorption of nutrients, metabolic alterations, increased intestinal protein losses, reduced protein synthesis, increased protein catabolism and disturbance of substrate utilization [2,3]
Serine one-carbon catabolism with formate overflow
Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors
BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.
Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health
Cyclage, catabolism, and the affine Hecke algebra
We identify a subalgebra \pH_n of the extended affine Hecke algebra \eH_n of
type A. The subalgebra \pH_n is a \u-analogue of the monoid algebra of \S_n
\ltimes \ZZ_{\geq 0}^n and inherits a canonical basis from that of \eH_n. We
show that its left cells are naturally labeled by tableaux filled with positive
integer entries having distinct residues mod n, which we term \emph{positive
affine tableaux} (PAT).
We then exhibit a cellular subquotient \R_{1^n} of \pH_n that is a
\u-analogue of the ring of coinvariants \CC[y_1,...,y_n]/(e_1,...,e_n) with
left cells labeled by PAT that are essentially standard Young tableaux with
cocharge labels. Multiplying canonical basis elements by a certain element \pi
\in \pH_n corresponds to rotations of words, and on cells corresponds to
cocyclage. We further show that \R_{1^n} has cellular quotients \R_\lambda that
are \u-analogues of the Garsia-Procesi modules R_\lambda with left cells
labeled by (a PAT version of) the \lambda-catabolizable tableaux.
We give a conjectural description of a cellular filtration of \pH_n, the
subquotients of which are isomorphic to dual versions of \R_\lambda under the
perfect pairing on \R_{1^n}. We conjecture how this filtration relates to the
combinatorics of the cells of \eH_n worked out by Shi, Lusztig, and Xi. We also
conjecture that the k-atoms of Lascoux, Lapointe, and Morse and the
R-catabolizable tableaux of Shimozono and Weyman have cellular counterparts in
\pH_n. We extend the idea of atom copies of Lascoux, Lapoint, and Morse to
positive affine tableaux and give descriptions, mostly conjectural, of some of
these copies in terms of catabolizability.Comment: 58 pages, youngtab.sty included for tableau
Auxin and tryptophan homeostasis are facilitated by the ISS1/VAS1 aromatic aminotransferase in arabidopsis
Indole-3-acetic acid (IAA) plays a critical role in regulating numerous aspects of plant growth and development. While there is much genetic support for tryptophan-dependent (Trp-D) IAA synthesis pathways, there is little genetic evidence for tryptophan-independent (Trp-I) IAA synthesis pathways. Using Arabidopsis, we identified two mutant alleles of ISS1 ( I: ndole S: evere S: ensitive) that display indole-dependent IAA overproduction phenotypes including leaf epinasty and adventitious rooting. Stable isotope labeling showed that iss1, but not WT, uses primarily Trp-I IAA synthesis when grown on indole-supplemented medium. In contrast, both iss1 and WT use primarily Trp-D IAA synthesis when grown on unsupplemented medium. iss1 seedlings produce 8-fold higher levels of IAA when grown on indole and surprisingly have a 174-fold increase in Trp. These findings indicate that the iss1 mutant's increase in Trp-I IAA synthesis is due to a loss of Trp catabolism. ISS1 was identified as At1g80360, a predicted aromatic aminotransferase, and in vitro and in vivo analysis confirmed this activity. At1g80360 was previously shown to primarily carry out the conversion of indole-3-pyruvic acid to Trp as an IAA homeostatic mechanism in young seedlings. Our results suggest that in addition to this activity, in more mature plants ISS1 has a role in Trp catabolism and possibly in the metabolism of other aromatic amino acids. We postulate that this loss of Trp catabolism impacts the use of Trp-D and/or Trp-I IAA synthesis pathways.T32 AR059033 - NIAMS NIH HH
Recommended from our members
Therapeutic Effect of Targeting Branched-Chain Amino Acid Catabolic Flux in Pressure-Overload Induced Heart Failure.
Background Branched-chain amino acid (BCAA) catabolic defect is an emerging metabolic hallmark in failing hearts in human and animal models. The therapeutic impact of targeting BCAA catabolic flux under pathological conditions remains understudied. Methods and Results BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), a small-molecule inhibitor of branched-chain ketoacid dehydrogenase kinase, was used to enhance BCAA catabolism. After 2Â weeks of transaortic constriction, mice with significant cardiac dysfunctions were treated with vehicle or BT2. Serial echocardiograms showed continuing pathological deterioration in left ventricle of the vehicle-treated mice, whereas the BT2-treated mice showed significantly preserved cardiac function and structure. Moreover, BT2 treatment improved systolic contractility and diastolic mechanics. These therapeutic benefits appeared to be independent of impacts on left ventricle hypertrophy but associated with increased gene expression involved in fatty acid utilization. The BT2 administration showed no signs of apparent toxicity. Conclusions Our data provide the first proof-of-concept evidence for the therapeutic efficacy of restoring BCAA catabolic flux in hearts with preexisting dysfunctions. The BCAA catabolic pathway represents a novel and potentially efficacious target for treatment of heart failure
Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions
- …