485 research outputs found
Epigenetic Biomarkers for Environmental Exposures and Personalized Breast Cancer Prevention.
Environmental and lifestyle factors are believed to account for >80% of breast cancers; however, it is not well understood how and when these factors affect risk and which exposed individuals will actually develop the disease. While alcohol consumption, obesity, and hormone therapy are some known risk factors for breast cancer, other exposures associated with breast cancer risk have not yet been identified or well characterized. In this paper, it is proposed that the identification of blood epigenetic markers for personal, in utero, and ancestral environmental exposures can help researchers better understand known and potential relationships between exposures and breast cancer risk and may enable personalized prevention strategies
Environmental and Genetic Traffic in the Journey from Sperm to Offspring
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.O
Epigenetic Transgenerational Inheritance of Obesity Susceptibility
The prevalence of obesity and associated diseases has reached pandemic levels. Obesity is often associated with overnutrition and a sedentary lifestyle, but clearly other factors also increase the susceptibility of metabolic disease states. Ancestral and direct exposures to environmental toxicants and altered nutrition have been shown to increase susceptibility for obesity and metabolic dysregulation. Environmental insults can reprogram the epigenome of the germline (sperm and eggs), which transmits the susceptibility for disease to future generations through epigenetic transgenerational inheritance. In this review, we discuss current evidence and molecular mechanisms for epigenetic transgenerational inheritance of obesity susceptibility. Understanding ancestral environmental insults and epigenetic transgenerational impacts on future generations will be critical to fully understand the etiology of obesity and to develop preventative therapy options.The prevalence of obesity has increased dramatically over the past 30 years, and cannot be explained by genetics, diet, and exercise alone.A variety of early life and in utero exposures to environmental insults can change metabolic outcomes through developmental epigenetic reprogramming.Epigenetic transgenerational inheritance of obesity has been observed following ancestral exposure to a high-fat diet, malnutrition, and several environmental toxicants.Unique obesity-specific sperm epimutation signatures have been identified in the transgenerational F3 generation of animals ancestrally exposed to environmental toxicants.Numerous genes modified by DNA methylation in a variety of phenotypes and ancestral exposures have been found to be potential novel modulators of adipocyte (fat cell) metabolism and function
Environmental factors, epigenetics, and developmental origin of reproductive disorders
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of “Developmental Origins of Health and Disease” (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p′-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects
Exploring the Ethics of Implementation of Epigenomics Technologies in Cancer Screening:A Focus Group Study
New epigenomics technologies are being developed and used for the detection and prediction of various types of cancer. By allowing for timely intervention or preventive measures, epigenomics technologies show promise for public health, notably in population screening. In order to assess whether implementation of epigenomics technologies in population screening may be morally acceptable, it is important to understand – in an early stage of development – ethical and societal issues that may arise. We held 3 focus groups with experts in science and technology studies (STS) (n = 13) in the Netherlands, on 3 potential future applications of epigenomic technologies in screening programmes of increasing scope: cervical cancer, female cancers and ‘global’ cancer. On the basis of these discussions, this paper identifies ethical issues pertinent to epigenomics-based population screening, such as risk communication, trust and public acceptance; personal responsibility, stigmatisation and societal pressure, and data protection and data governance. It also points out how features of epigenomics (eg, modifiability) and changing concepts (eg, of cancer) may challenge the existing evaluative framework for screening programmes. This paper aims to anticipate and prepare for future ethical challenges when epigenomics technologies can be tested and introduced in public health settings
Environmental Epigenetics and Effects on Male Fertility
Environmental exposures to factors such as toxicants or nutrition can have impacts on testis biology and male fertility. The ability of these factors to influence epigenetic mechanisms in early life exposures or from ancestral exposures will be reviewed. A growing number of examples suggest environmental epigenetics will be a critical factor to consider in male reproduction
Recommended from our members
The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures.
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases
Recommended from our members
Exploring DDT’s Interlinked Impacts on Maternal and Child Health: Hormonal Dynamics and the Intersection with Obesity and Breast Cancer
Our study focuses on the impact of the pesticide DDT on maternal and child health, specifically in relation to obesity and breast cancer. The objective is to investigate the interdependence of obesity and breast cancer resulting from DDT exposure on a hormonal level, particularly estrogen, and to understand the association between DDT exposure and maternal and child health. The methodology employs a meta-analysis approach, analyzing independent studies on DDT's impacts on obesity and breast cancer, and examining the correlation between maternal DDT exposure and obesity, as well as the impact of obesity on breast cancer gene mutations. The study population primarily consists of mothers and their newborn children from the United States, with a focus on the persistence of DDT in regions such as South America, Africa, and Asia. Additionally, rodent studies were analyzed to see the impacts of DDT on generational development and reproduction. The data analysis is drawn from primary sources of similar research studies published in journals or scholarly websites, with a focus on the reliability and validity of the data. The results indicate a significant association between DDT exposure and obesity, as well as an increased risk of breast cancer, particularly estrogen receptor-positive cancer, in both maternal and child health. The report suggests a correlation between DDT exposure and heightened susceptibility to transgenerational obesity and breast cancer. However, it emphasizes the imperative for additional research endeavors and regulatory initiatives aimed at exploring alternative solutions to DDT and comprehending its multigenerational ramifications regarding disease
Epigenetics and lifestyle
The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms
- …