391,776 research outputs found

    A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics

    Get PDF
    Efron (1979) introduced the bootstrap method for independent data but it cannot be easily applied to spatial data because of their dependency. For spatial data that are correlated in terms of their locations in the underlying space the moving block bootstrap method is usually used to estimate the precision measures of the estimators. The precision of the moving block bootstrap estimators is related to the block size which is difficult to select. In the moving block bootstrap method also the variance estimator is underestimated. In this paper, first the semi-parametric bootstrap is used to estimate the precision measures of estimators in spatial data analysis. In the semi-parametric bootstrap method, we use the estimation of the spatial correlation structure. Then, we compare the semi-parametric bootstrap with a moving block bootstrap for variance estimation of estimators in a simulation study. Finally, we use the semi-parametric bootstrap to analyze the coal-ash data

    Iterated smoothed bootstrap confidence intervals for population quantiles

    Get PDF
    This paper investigates the effects of smoothed bootstrap iterations on coverage probabilities of smoothed bootstrap and bootstrap-t confidence intervals for population quantiles, and establishes the optimal kernel bandwidths at various stages of the smoothing procedures. The conventional smoothed bootstrap and bootstrap-t methods have been known to yield one-sided coverage errors of orders O(n^{-1/2}) and o(n^{-2/3}), respectively, for intervals based on the sample quantile of a random sample of size n. We sharpen the latter result to O(n^{-5/6}) with proper choices of bandwidths at the bootstrapping and Studentization steps. We show further that calibration of the nominal coverage level by means of the iterated bootstrap succeeds in reducing the coverage error of the smoothed bootstrap percentile interval to the order O(n^{-2/3}) and that of the smoothed bootstrap-t interval to O(n^{-58/57}), provided that bandwidths are selected of appropriate orders. Simulation results confirm our asymptotic findings, suggesting that the iterated smoothed bootstrap-t method yields the most accurate coverage. On the other hand, the iterated smoothed bootstrap percentile method interval has the advantage of being shorter and more stable than the bootstrap-t intervals.Comment: Published at http://dx.doi.org/10.1214/009053604000000878 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A subsampled double bootstrap for massive data

    Get PDF
    The bootstrap is a popular and powerful method for assessing precision of estimators and inferential methods. However, for massive datasets which are increasingly prevalent, the bootstrap becomes prohibitively costly in computation and its feasibility is questionable even with modern parallel computing platforms. Recently Kleiner, Talwalkar, Sarkar, and Jordan (2014) proposed a method called BLB (Bag of Little Bootstraps) for massive data which is more computationally scalable with little sacrifice of statistical accuracy. Building on BLB and the idea of fast double bootstrap, we propose a new resampling method, the subsampled double bootstrap, for both independent data and time series data. We establish consistency of the subsampled double bootstrap under mild conditions for both independent and dependent cases. Methodologically, the subsampled double bootstrap is superior to BLB in terms of running time, more sample coverage and automatic implementation with less tuning parameters for a given time budget. Its advantage relative to BLB and bootstrap is also demonstrated in numerical simulations and a data illustration

    Bootstrap Blues

    Full text link
    Meet David*. In mid-January, he came to the small town Iowa elementary school where I work. David has attended more schools in the two years since he started school than I have in my lifetime. In fact, the school he just moved from only has four days of attendance listed on his record. David moves so often because he’s homeless. His situation is not what we may stereotypically think of as “homeless”—you wouldn’t see him on the streets or even in soup kitchens. Instead, David stays with his mother, and they couch surf from one home to another from week to week. David and his mother are part of a mounting statistic that tells us that 41 percent of the homeless population includes families

    A Residual Bootstrap for Conditional Value-at-Risk

    Full text link
    This paper proposes a fixed-design residual bootstrap method for the two-step estimator of Francq and Zako\"ian (2015) associated with the conditional Value-at-Risk. The bootstrap's consistency is proven for a general class of volatility models and intervals are constructed for the conditional Value-at-Risk. A simulation study reveals that the equal-tailed percentile bootstrap interval tends to fall short of its nominal value. In contrast, the reversed-tails bootstrap interval yields accurate coverage. We also compare the theoretically analyzed fixed-design bootstrap with the recursive-design bootstrap. It turns out that the fixed-design bootstrap performs equally well in terms of average coverage, yet leads on average to shorter intervals in smaller samples. An empirical application illustrates the interval estimation

    Smoothed and Iterated Bootstrap Confidence Regions for Parameter Vectors

    Full text link
    The construction of confidence regions for parameter vectors is a difficult problem in the nonparametric setting, particularly when the sample size is not large. The bootstrap has shown promise in solving this problem, but empirical evidence often indicates that some bootstrap methods have difficulty in maintaining the correct coverage probability, while other methods may be unstable, often resulting in very large confidence regions. One way to improve the performance of a bootstrap confidence region is to restrict the shape of the region in such a way that the error term of an expansion is as small an order as possible. To some extent, this can be achieved by using the bootstrap to construct an ellipsoidal confidence region. This paper studies the effect of using the smoothed and iterated bootstrap methods to construct an ellipsoidal confidence region for a parameter vector. The smoothed estimate is based on a multivariate kernel density estimator. This paper establishes a bandwidth matrix for the smoothed bootstrap procedure that reduces the asymptotic coverage error of the bootstrap percentile method ellipsoidal confidence region. We also provide an analytical adjustment to the nominal level to reduce the computational cost of the iterated bootstrap method. Simulations demonstrate that the methods can be successfully applied in practice
    • …
    corecore