382,728 research outputs found
Expression of the CD6 T lymphocyte differentiation antigen in normal human brain
Antigens shared by the immune and central nervous systems (CNS) have been described repeatedly.
The present study reports the expression of the CD6 lymphocyte differentiation antigen in normal human
brain evidenced by immunohistochemistry and Northern blot analysis. A panel of various anti-CD6
monoclonal antibodies (mabs) tested on serial cryostat sections identified CD6-positive cells randomly
scattered in parenchyma of all examined brain areas. Northern blot analysis with a highly sensitive cRNA
probe revealed a 3.1 kb CD6-specific mRNA in various brain regions, especially in basalganglia and cortex
cerebellum. Staining with mabs raised against different hematopoietic cell types, as well as hybridization
with probes specific for the ß- and y-T cell receptor (TCR) chains support the notion that CD6 is
expressed by original brain cells. The nature of the CD6-positive cell type and possible functions of shared
antigens in immune and nervous systems are discusse
Sequence of a putative human housekeeping gene (HK33) localized on chromosome 1
A gene (X33) localized on human chromosome 1 has been detected by crossreaction of its fusion protein with a
monospecific antiserum directed against human vitamin-D-binding protein (hDBP; group-specific component). Its
cDNA sequence analysis showed no evident homologies neither to the sequence encoding hDBP nor to any other
sequence. The largest cDNA clone of 3.2 kb includes a 897-bp coding region and a large 3’ untranslated region with at
least four polyadenylation sites. Further cDNA amplification using PCR demonstrated a total cDNA length of approx.
3.7 kb. Northern blot analysis revealed signals at about 2.2-2.5 kb and 4.0 kb, the shorter transcripts representing
mRNAs using one of the two polyadenylation sites at about 2.0 kb. Synthesis of the 299-amino-acid polypeptide (33 kDa)
in the bacterial host, with subsequent Western blot analysis, verified the sequence-specific recognition by the hDBPspecific
antiserum. The search of protein databanks revealed no homology of HK33 to any known sequence. Since the
gene is transcribed in all cells and tissues tested so far, it is a strong candidate for another housekeeping gene
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA
Objective: To use deep sequencing to identify novel microRNAs in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design: A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate microRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3’-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. Results: We identified 990 known microRNAs and 1621 potential novel microRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate microRNAs were analysed further, of which 6 remained after northern blot analysis. Three novel microRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). Conclusion: Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis. Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man
Human interleukin-1 receptor antagonist is expressed in liver
AbstractUsing PCR and Northern blot analysis, an IL-1 receptor antagonist specific transcript was amplified from HepG2- and liver mRNA, cDNA clones coding for IL-1 receptor antagonist were isolated from a liver cDNA library and sequence comparison revealed complete identity with the secreted, monocytic form of IL-1 receptor antagonist
Comparisons of ELISA and Western blot assays for detection of autophagy flux
We analyzed autophagy/mitophagy flux in vitro (C2C12 myotubes) and in vivo (mouse skeletal muscle) following the treatments of autophagy inducers (starvation, rapamycin) and a mitophagy inducer (carbonyl cyanide m-chlorophenylhydrazone, CCCP) using two immunodetection methods, ELISA and Western blotting, and compared their working range, accuracy, and reliability. The ELISAs showed a broader working range than that of the LC3 Western blots (Table 1). Table 2 showed that data value distribution was tighter and the average standard error from the ELISA was much smaller than those of the Western blot, directly relating to the accuracy of the assay. Test-retest reliability analysis showed good reliability for three individual ELISAs (interclass correlation, ≥ 0.7), but poor reliability for three individual Western blots (interclass correlation, ≤ 0.4) (Table 3). Keywords: Autophagy, Mitophagy, ELISA, Western blot, Skeletal muscl
Forensic Analysis of Synthetically Generated Western Blot Images
The widespread diffusion of synthetically generated content is a serious threat that needs urgent countermeasures. As a matter of fact, the generation of synthetic content is not restricted to multimedia data like videos, photographs or audio sequences, but covers a significantly vast area that can include biological images as well, such as western blot and microscopic images. In this paper, we focus on the detection of synthetically generated western blot images. These images are largely explored in the biomedical literature and it has been already shown they can be easily counterfeited with few hopes to spot manipulations by visual inspection or by using standard forensics detectors. To overcome the absence of publicly available data for this task, we create a new dataset comprising more than 14K original western blot images and 24K synthetic western blot images, generated using four different state-of-the-art generation methods. We investigate different strategies to detect synthetic western blots, exploring binary classification methods as well as oneclass detectors. In both scenarios, we never exploit synthetic western blot images at training stage. The achieved results show that synthetically generated western blot images can be spot with good accuracy, even though the exploited detectors are not optimized over synthetic versions of these scientific images. We also test the robustness of the developed detectors against post-processing operations commonly performed on scientific images, showing that we can be robust to JPEG compression and that some generative models are easily recognizable, despite the application of editing might alter the artifacts they leave
Recommended from our members
Submission of Evidence on Online Violence Against Women to the UN Special Rapporteur on Violence Against Women, its Causes and Consequences, Dr Dubravka Šimonović
Figure S1. B3GALNT2 levels determined by W.B. and ROC curve. a–c Relative mRNA expression of B3GALNT2 in HCC tumor tissues and normal liver tissues obtained from GSE76427, GSE36376, and TCGA-LIHC datasets. d Western blot analysis of B3GALNT2 levels in 24 pairs of HCC tissues. T HCC tumor tissue, N adjacent non-tumor tissue. e ROC curve analysis of the sensitivity and specificity for the predictive value of TNM model, B3GALNT2 expression, and the combination model. (TIFF 546 kb
Tau-crystallin/alpha-enolase: one gene encodes both an enzyme and a lens structural protein.
tau-Crystallin has been a major component of the cellular lenses of species throughout vertebrate evolution, from lamprey to birds. Immunofluorescence analysis of the embryonic turtle lens, using antiserum to lamprey tau-crystallin showed that the protein is expressed throughout embryogenesis and is present at high concentrations in all parts of the lens. Partial peptide sequence for the isolated turtle protein and deduced sequences for several lamprey peptides all revealed a close similarity to the glycolytic enzyme enolase (E.C. 4.2.1.11). A full-sized cDNA for putative duck tau-crystallin was obtained and sequenced, confirming the close relationship with alpha-enolase. Southern blot analysis showed that the duck genome contains a single alpha-enolase gene, while Northern blot analysis showed that the message for tau-crystallin/alpha-enolase is present in embryonic duck lens at 25 times the abundance found in liver. tau-Crystallin possesses enolase activity, but the activity is greatly reduced, probably because of age-related posttranslational modification. It thus appears that a highly conserved, important glycolytic enzyme has been used as a structural component of lens since the start of vertebrate evolution. Apparently the enzyme has not been recruited for its catalytic activity but for some distinct structural property. tau-Crystallin/alpha-enolase is an example of a multifunctional protein playing two very different roles in evolution but encoded by a single gene
Functional expression of TRPV4 channels in human collecting duct cells: implications for secondary hypertension in diabetic nephropathy
Background. The Vanilloid subfamily of transient receptor potential (TRPV) ion channels has been widely implicated in detecting osmotic and mechanical stress. In the current study, we examine the functional expression of TRPV4 channels in cell volume regulation in cells of the human collecting duct. Methods. Western blot analysis, siRNA knockdown, and microfluorimetry were used to assess the expression and function of TRPV4 in mediating Ca2+-dependent mechanical stimulation within a novel system of the human collecting duct (HCD). Results. Native and siRNA knockdown of TRPV4 protein expression was confirmed by western blot analysis. Touch was used as a cell-directed surrogate for osmotic stress. Mechanical stimulation of HCD cells evoked a transient increase in [Ca2+]i that was dependent upon thapsigargin-sensitive store release and Ca2+ influx. At 48 hrs, high glucose and mannitol (25 mM) reduced TRPV4 expression by 54% and 24%, respectively. Similar treatment doubled SGK1 expression. Touch-evoked changes were negated following TRPV4 knockdown. Conclusion. Our data confirm expression of Ca2+-dependent TRPV4 channels in HCD cells and suggest that a loss of expression in response to high glucose attenuates the ability of the collecting duct to exhibit regulatory volume decreases, an effect that may contribute to the pathology of fluid and electrolyte imbalance as observed in diabetic nephropathy
Lin28A induces energetic switching to glycolytic metabolism in human embryonic kidney cells
Background:
Loss of a cell’s capacity to generate sufficient energy for cellular functions is a key hallmark of the ageing process and ultimately leads to a variety of important age-related pathologies such as cancer, Parkinson’s disease and atherosclerosis. Regenerative medicine has sought to reverse these pathologies by reprogramming somatic cells to a more juvenile energetic state using a variety of stem cell factors. One of these factors, Lin28, is considered a candidate for modification in the reprogramming of cellular energetics to ameliorate the ageing process while retaining cell phenotype.
Results:
Over-expression of Lin28A resulted in key changes to cellular metabolism not observed in wild-type controls. Extracellular pH flux analysis indicated that Lin28A over expression significantly increased the rate of glycolysis, whilst high resolution oxygen respirometry demonstrated a reduced oxygen consumption. Western blot and real-time PCR analysis identified Hexokinase II as one of the key modulators of glycolysis in these cells which was further confirmed by increased glucose transport. A metabolic switching effect was further emphasised by Western blot analysis where the oxygen consuming mitochondrial complex IV was significantly reduced after Lin28A over expression.
Conclusions:
Results from this study confirm that Lin28A expression promotes metabolic switching to a phenotype that relies predominantly on glycolysis as an energy source, while compromising oxidative phosphorylation. Mechanisms to augment regulated Lin28A in age related pathologies that are characterised by mitochondria dysfunction or in differentiated and aged post-mitotic cells is the future goal of this work
- …