19,572 research outputs found

    The magnetosome model: insights into the mechanisms of bacterial biomineralization.

    Get PDF
    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds

    Temporal tracking of mineralization and transcriptional developments of shell formation during the early life history of pearl oyster Pinctada maxima

    Get PDF
    Molluscan larval ontogeny is a highly conserved process comprising three principal developmental stages. A characteristic unique to each of these stages is shell design, termed prodissoconch I, prodissoconch II and dissoconch. These shells vary in morphology, mineralogy and microstructure. The discrete temporal transitions in shell biomineralization between these larval stages are utilized in this study to investigate transcriptional involvement in several distinct biomineralization events. Scanning electron microscopy and X-ray diffraction analysis of P. maxima larvae and juveniles collected throughout post-embryonic ontogenesis, document the mineralogy and microstructure of each shelled stage as well as establishing a timeline for transitions in biomineralization. P. maxima larval samples most representative of these biomineralization distinctions and transitions were analyzed for differential gene expression on the microarray platform PmaxArray 1.0. A number of transcripts are reported as differentially expressed in correlation to the mineralization events of P. maxima larval ontogeny. Some of those isolated are known shell matrix genes while others are novel; these are discussed in relation to potential shell formation roles. This interdisciplinary investigation has linked the shell developments of P. maxima larval ontogeny with corresponding gene expression profiles, furthering the elucidation of shell biomineralization

    Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation

    Get PDF
    Bacterial magnetosomes are intracellular compartments that house highly ordered magnetite crystals. By using Magnetospirillum sp. AMB-1 as a model system, we show that magnetosome vesicles exist in the absence of magnetite, biomineralization of magnetite proceeds simultaneously in multiple vesicles, and biomineralization proceeds from the same location in each vesicle. The magnetosome-associated protein, MamA, is required for the formation of functional magnetosome vesicles and displays a dynamic subcellular localization throughout the growth cycle of magnetotactic bacteria. Together, these results suggest that the magnetosome precisely coordinates magnetite biomineralization and can serve as a model system for the study of organelle biogenesis in noneukaryotic cells

    Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Get PDF
    This is the post-print version of the final paper published in Journal of Hazardous Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U–bacterial interaction experiments were performed at low pH values (2.0–4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase

    Biominerals - source and inspiration for novel advanced materials

    Get PDF
    Biomineralization seems an odd sort of word. How can you combine biology and minerals? However, a quick look around brings to light many familiar objects that are examples of biominerals. Most dramatic are the coral reefs and sea shells of the marine environment (calcium carbonate) and human bone and teeth (calcium hydroxyapatite) but there are many other examples. In the past 10 years, an increasing number of biominerals has been reported (Table 1). Interest in the biological and chemical processes that lead to biomineralization, howeyer, has only developed rather recently. Early observations were made by paleontologists who were interested in the preservation, through geological time, of the hard parts of organisms such as shells and skeletons but only in 1989 did the field really come of age with the almost simultaneous publication of three monographs covering current knowledge of the biological, biochemical, chemical and taxonomic aspects of biomineralization (Mann et al. 1989; Lowenstam & Weiner 1989; Simkiss & Wilbur 1989)

    Controlled biomineralization of magnetite (Fe<sub>3</sub>O<sub>4</sub>) by <i>Magnetospirillum gryphiswaldense</i>

    Get PDF
    Results from a study of the chemical composition and micro-structural characteristics of bacterial magnetosomes extracted from the magnetotactic bacterial strain Magnetospirillum gryphiswaldense are presented here. Using high-resolution transmission electron microscopy combined with selected-area electron diffraction and energy dispersive X-ray microanalysis, biogenic magnetite particles isolated from mature cultures were analysed for variations in crystallinity and particle size, as well as chain character and length. The analysed crystals showed a narrow size range (∼14-67 nm) with an average diameter of 46±6.8 nm, cuboctahedral morphologies and typical Gamma type crystal size distributions. The magnetite particles exhibited a high chemical purity (exclusively Fe3O4) and the majority fall within the single-magnetic-domain range

    Ultrastructure of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) with a focus on vacuolar crystal-like particles.

    Get PDF
    Biomineralization in calcareous dinophytes (Thoracosphaeracaea, Peridiniales) takes place in coccoid cells and is presently poorly understood. Vacuolar crystal-like particles as well as collection sites within the prospective calcareous shell may play a crucial role during this process at the ultrastructural level. Using transmission electron microscopy, we investigated the ultrastructure of coccoid cells at an early developmental stage in fourteen calcareous dinophyte strains (corresponding to at least ten species of Calciodinellum, Calcigonellum, Leonella, Pernambugia, Scrippsiella, and Thoracosphaera). The shell of the coccoid cells consisted either of one (Leonella, Thoracosphaera) or two matrices (Scrippsiella and its relatives) of unknown element composition, whereas calcite is deposited in the only or the outer layer, respectively. We observed crystal-like particles in cytoplasmic vacuoles in cells of nine of the strains investigated and assume that they are widespread among calcareous dinophytes. However, similar structures are also found outside the Thoracosphaeraceae, and we postulate an evolutionarily old physiological pathway (possibly involved in detoxification) that later was specialized for calcification. We aim to contribute to a deeper knowledge of the biomineralization process in calcareous dinophytes

    Effect of Langmuir monolayer of bovine serum albumin protein on the morphology of calcium carbonate

    Full text link
    Bovine serum albumin (BSA) Langmuir monolayer, as a model of biomineralization-associated proteins, was used to study its effect on regulated biomineralization of calcium carbonate. The effects of the BSA Langmuir monolayer and the concentration of the subphase solution on the nucleation and growth processes and morphology of the calcium carbonate crystal were investigated. The morphology and polymorphic phase of the resulting calcium carbonate crystals were characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Moreover, the interaction mechanisms of the subphase solution with the BSA Langmuir monolayer were discussed. It was found that BSA Langmuir monolayer could be used as a template to successfully manipulate the polymorphic phase and crystal morphology of calcium carbonate and had obvious influence on the oriented crystallization and growth. The final morphology or aggregation mode of the calcite crystal was closely dependent on the concentration of calcium bicarbonate solution. It is expected that this research would help to better understand the mechanism of biomineralization by revealing the interactions between protein matrices and crystallization of calcium carbonate crystal.Comment: 4 pages, 4 figure

    Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization

    Get PDF
    Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches
    corecore