64,986 research outputs found

    Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models

    Get PDF
    Penalization of the likelihood by Jeffreys' invariant prior, or by a positive power thereof, is shown to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial generalized linear models. The class of models includes logistic regression, where the Jeffreys-prior penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estimator; and also models with other commonly used link functions such as probit and log-log. Shrinkage towards equiprobability across observations, relative to the maximum likelihood estimator, is established theoretically and is studied through illustrative examples. Some implications of finiteness and shrinkage for inference are discussed, particularly when inference is based on Wald-type procedures. A widely applicable procedure is developed for computation of maximum penalized likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial responses and totals. These theoretical results and methods underpin the increasingly widespread use of reduced-bias and similarly penalized binomial regression models in many applied fields

    Model selection via Bayesian information capacity designs for generalised linear models

    Get PDF
    The first investigation is made of designs for screening experiments where the response variable is approximated by a generalised linear model. A Bayesian information capacity criterion is defined for the selection of designs that are robust to the form of the linear predictor. For binomial data and logistic regression, the effectiveness of these designs for screening is assessed through simulation studies using all-subsets regression and model selection via maximum penalised likelihood and a generalised information criterion. For Poisson data and log-linear regression, similar assessments are made using maximum likelihood and the Akaike information criterion for minimally-supported designs that are constructed analytically. The results show that effective screening, that is, high power with moderate type I error rate and false discovery rate, can be achieved through suitable choices for the number of design support points and experiment size. Logistic regression is shown to present a more challenging problem than log-linear regression. Some areas for future work are also indicated

    Classification of airborne laser scanning point clouds based on binomial logistic regression analysis

    Get PDF
    This article presents a newly developed procedure for the classification of airborne laser scanning (ALS) point clouds, based on binomial logistic regression analysis. By using a feature space containing a large number of adaptable geometrical parameters, this new procedure can be applied to point clouds covering different types of topography and variable point densities. Besides, the procedure can be adapted to different user requirements. A binomial logistic model is estimated for all a priori defined classes, using a training set of manually classified points. For each point, a value is calculated defining the probability that this point belongs to a certain class. The class with the highest probability will be used for the final point classification. Besides, the use of statistical methods enables a thorough model evaluation by the implementation of well-founded inference criteria. If necessary, the interpretation of these inference analyses also enables the possible definition of more sub-classes. The use of a large number of geometrical parameters is an important advantage of this procedure in comparison with current classification algorithms. It allows more user modifications for the large variety of types of ALS point clouds, while still achieving comparable classification results. It is indeed possible to evaluate parameters as degrees of freedom and remove or add parameters as a function of the type of study area. The performance of this procedure is successfully demonstrated by classifying two different ALS point sets from an urban and a rural area. Moreover, the potential of the proposed classification procedure is explored for terrestrial data
    • …
    corecore