3,200 research outputs found
Tropical analogues of a Dempe-Franke bilevel optimization problem
We consider the tropical analogues of a particular bilevel optimization
problem studied by Dempe and Franke and suggest some methods of solving these
new tropical bilevel optimization problems. In particular, it is found that the
algorithm developed by Dempe and Franke can be formulated and its validity can
be proved in a more general setting, which includes the tropical bilevel
optimization problems in question. We also show how the feasible set can be
decomposed into a finite number of tropical polyhedra, to which the tropical
linear programming solvers can be applied.Comment: 11 pages, 1 figur
Deep Bilevel Learning
We present a novel regularization approach to train neural networks that
enjoys better generalization and test error than standard stochastic gradient
descent. Our approach is based on the principles of cross-validation, where a
validation set is used to limit the model overfitting. We formulate such
principles as a bilevel optimization problem. This formulation allows us to
define the optimization of a cost on the validation set subject to another
optimization on the training set. The overfitting is controlled by introducing
weights on each mini-batch in the training set and by choosing their values so
that they minimize the error on the validation set. In practice, these weights
define mini-batch learning rates in a gradient descent update equation that
favor gradients with better generalization capabilities. Because of its
simplicity, this approach can be integrated with other regularization methods
and training schemes. We evaluate extensively our proposed algorithm on several
neural network architectures and datasets, and find that it consistently
improves the generalization of the model, especially when labels are noisy.Comment: ECCV 201
Solving ill-posed bilevel programs
This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem
- …