1,181 research outputs found

    Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy

    Get PDF
    Eutectic related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional electron microscopy. The non-destructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control and 4D imaging of phase reaction processes on the nanometer-ultrafast time scale open new venues for engineering various reactions in a wide variety of other systems

    Monte Carlo simulations of polyion−macroion complexes. 1. Equal absolute polyion and macroion charges

    Get PDF
    Intermolecular structures of complexes formed between a charged polymer and a spherical and oppositely charged macroion have been studied by employing the primitive model solved by Monte Carlo simulations. The strong-complex case involving a polyion and a macroion with equal absolute charges and without small ions was considered. The influence of the polyion flexibility with a bare persistence length ranging from 7 to 1000 Å for four different systems characterized by different polyion linear charge densities and macroion sizes has been examined. Radial distributions, polyion bead complexation probabilities, loop, tail, and train characteristics, and energetic analysis have been performed. The strongest and most compact complex, involving a collapsed polyion wrapping the macroion, was formed for a semiflexible chain. As the stiffness was increased, this state was transformed into a range of different structures comprising “tennis ball seam”-like, solenoid, multiloop (“rosette”), and single-loop arrangements as well as structures involving only a single polyion-macroion contact region

    Amplitude and Frequency Spectrum of Thermal Fluctuations of A Translocating RNA Molecule

    Full text link
    Using a combination of theory and computer simulations, we study the translocation of an RNA molecule, pulled through a solid-state nanopore by an optical tweezer, as a method to determine its secondary structure. The resolution with which the elements of the secondary structure can be determined is limited by thermal fluctuations. We present a detailed study of these thermal fluctuations, including the frequency spectrum, and show that these rule out single-nucleotide resolution under the experimental conditions which we simulated. Two possible ways to improve this resolution are strong stretching of the RNA with a back-pulling voltage across the membrane, and stiffening of the translocated part of the RNA by biochemical means.Comment: Significantly expanded compared to previous version, 13 pages, 4 figures, to appear in J. Phys.: Condens. Matte

    Through the Eye of the Needle: Recent Advances in Understanding Biopolymer Translocation

    Full text link
    In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical developments. In this short theory-experiment review, we discuss recent progress in this field with a strong focus on non-equilibrium aspects of polymer dynamics during the translocation process.Comment: 29 pages, 6 figures, 3 tables, to appear in J. Phys.: Condens. Matter as a Topical Revie

    Research on a non-destructive fluidic storage control device

    Get PDF
    Fluidic memory device with associated fluidic alpha numerical displa
    corecore