4,645 research outputs found

    Using Generic Summarization to Improve Music Information Retrieval Tasks

    Get PDF
    In order to satisfy processing time constraints, many MIR tasks process only a segment of the whole music signal. This practice may lead to decreasing performance, since the most important information for the tasks may not be in those processed segments. In this paper, we leverage generic summarization algorithms, previously applied to text and speech summarization, to summarize items in music datasets. These algorithms build summaries, that are both concise and diverse, by selecting appropriate segments from the input signal which makes them good candidates to summarize music as well. We evaluate the summarization process on binary and multiclass music genre classification tasks, by comparing the performance obtained using summarized datasets against the performances obtained using continuous segments (which is the traditional method used for addressing the previously mentioned time constraints) and full songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA, MMR, and a Support Sets-based Centrality model improve classification performance when compared to selected 30-second baselines. We also show that summarized datasets lead to a classification performance whose difference is not statistically significant from using full songs. Furthermore, we make an argument stating the advantages of sharing summarized datasets for future MIR research.Comment: 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    On the Application of Generic Summarization Algorithms to Music

    Get PDF
    Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate this summarization's performance, we adopt an extrinsic approach: we compare a Fado Genre Classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on 2 different datasets. We show that Maximal Marginal Relevance (MMR), LexRank and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.Comment: 12 pages, 1 table; Submitted to IEEE Signal Processing Letter

    Deep Dialog Act Recognition using Multiple Token, Segment, and Context Information Representations

    Get PDF
    Dialog act (DA) recognition is a task that has been widely explored over the years. Recently, most approaches to the task explored different DNN architectures to combine the representations of the words in a segment and generate a segment representation that provides cues for intention. In this study, we explore means to generate more informative segment representations, not only by exploring different network architectures, but also by considering different token representations, not only at the word level, but also at the character and functional levels. At the word level, in addition to the commonly used uncontextualized embeddings, we explore the use of contextualized representations, which provide information concerning word sense and segment structure. Character-level tokenization is important to capture intention-related morphological aspects that cannot be captured at the word level. Finally, the functional level provides an abstraction from words, which shifts the focus to the structure of the segment. We also explore approaches to enrich the segment representation with context information from the history of the dialog, both in terms of the classifications of the surrounding segments and the turn-taking history. This kind of information has already been proved important for the disambiguation of DAs in previous studies. Nevertheless, we are able to capture additional information by considering a summary of the dialog history and a wider turn-taking context. By combining the best approaches at each step, we achieve results that surpass the previous state-of-the-art on generic DA recognition on both SwDA and MRDA, two of the most widely explored corpora for the task. Furthermore, by considering both past and future context, simulating annotation scenario, our approach achieves a performance similar to that of a human annotator on SwDA and surpasses it on MRDA.Comment: 38 pages, 7 figures, 9 tables, submitted to JAI
    • …
    corecore