4,645 research outputs found
Using Generic Summarization to Improve Music Information Retrieval Tasks
In order to satisfy processing time constraints, many MIR tasks process only
a segment of the whole music signal. This practice may lead to decreasing
performance, since the most important information for the tasks may not be in
those processed segments. In this paper, we leverage generic summarization
algorithms, previously applied to text and speech summarization, to summarize
items in music datasets. These algorithms build summaries, that are both
concise and diverse, by selecting appropriate segments from the input signal
which makes them good candidates to summarize music as well. We evaluate the
summarization process on binary and multiclass music genre classification
tasks, by comparing the performance obtained using summarized datasets against
the performances obtained using continuous segments (which is the traditional
method used for addressing the previously mentioned time constraints) and full
songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA,
MMR, and a Support Sets-based Centrality model improve classification
performance when compared to selected 30-second baselines. We also show that
summarized datasets lead to a classification performance whose difference is
not statistically significant from using full songs. Furthermore, we make an
argument stating the advantages of sharing summarized datasets for future MIR
research.Comment: 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio,
Speech and Language Processin
On the Application of Generic Summarization Algorithms to Music
Several generic summarization algorithms were developed in the past and
successfully applied in fields such as text and speech summarization. In this
paper, we review and apply these algorithms to music. To evaluate this
summarization's performance, we adopt an extrinsic approach: we compare a Fado
Genre Classifier's performance using truncated contiguous clips against the
summaries extracted with those algorithms on 2 different datasets. We show that
Maximal Marginal Relevance (MMR), LexRank and Latent Semantic Analysis (LSA)
all improve classification performance in both datasets used for testing.Comment: 12 pages, 1 table; Submitted to IEEE Signal Processing Letter
Deep Dialog Act Recognition using Multiple Token, Segment, and Context Information Representations
Dialog act (DA) recognition is a task that has been widely explored over the
years. Recently, most approaches to the task explored different DNN
architectures to combine the representations of the words in a segment and
generate a segment representation that provides cues for intention. In this
study, we explore means to generate more informative segment representations,
not only by exploring different network architectures, but also by considering
different token representations, not only at the word level, but also at the
character and functional levels. At the word level, in addition to the commonly
used uncontextualized embeddings, we explore the use of contextualized
representations, which provide information concerning word sense and segment
structure. Character-level tokenization is important to capture
intention-related morphological aspects that cannot be captured at the word
level. Finally, the functional level provides an abstraction from words, which
shifts the focus to the structure of the segment. We also explore approaches to
enrich the segment representation with context information from the history of
the dialog, both in terms of the classifications of the surrounding segments
and the turn-taking history. This kind of information has already been proved
important for the disambiguation of DAs in previous studies. Nevertheless, we
are able to capture additional information by considering a summary of the
dialog history and a wider turn-taking context. By combining the best
approaches at each step, we achieve results that surpass the previous
state-of-the-art on generic DA recognition on both SwDA and MRDA, two of the
most widely explored corpora for the task. Furthermore, by considering both
past and future context, simulating annotation scenario, our approach achieves
a performance similar to that of a human annotator on SwDA and surpasses it on
MRDA.Comment: 38 pages, 7 figures, 9 tables, submitted to JAI
- …