886 research outputs found

    Secondary organic aerosol production from modern diesel engine emissions

    Get PDF
    Secondary organic aerosol (SOA) production was observed at significant levels in a series of modern diesel exhaust (DE) aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE). The greatest production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N<sub>2</sub>O<sub>5</sub> (for NO<sub>3</sub> radical production) experiments. The analysis for a limited number (54) of polar organic compounds (POC) was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]<sub>o</sub>/[NO<sub>x</sub>]<sub>o</sub> ratios and displayed an average SOA %yield (in relation to toluene) of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]<sub>o</sub>/[NO<sub>x</sub>]<sub>o</sub> on SOA production in more simplified mixtures

    Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Get PDF
    An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons – PAHs, and polar organic compounds – POCs) were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI), molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid were abundant during October 2006. These two acids showed strong linear relationships with maximum daily ozone concentrations throughout the entire sampling period. This correlation with ozone suggested that the secondary aerosol constituents such as phthalic and cis-pinonic acids were probably formed through O3-induced photochemical transformation

    Dependence of nonlinear refractive index of ZnSe on Be and Mg content

    Get PDF
    The values of the nonlinear refractive index n(2) and the two-photon absorption coefficient beta of ternary and quaternary ZnSe-based mixed crystals were extracted from the standard backward degenerate four wave mixing (DFWM) and nonlinear transmission measurements at 532 nm, respectively. Studied crystals were grown by the modified high-pressure Bridgman method. We found that the value of the nonlinear refractive index n(2) for Zn(0.79)Be(0.21)Se is higher than that for Zn(0.80)Mg(0.20)Se. However, the opposite behaviour was found in the case of two-photon absorption coefficient beta for these compounds. We also found that the values of the nonlinear refractive index n(2) and the two-photon absorption coefficient beta for Zn(0.83)Be(0.04)Mg(0.13)Se are about five times lower and three times higher than that for Zn(0.80)Mg(0.13)Se, respectively. In the case of ternary ZnSe-based crystals we noticed that the value of the nonlinear refractive index n2 decreases with increasing Mg or Be content. However, the value of the two-photon absorption coefficient beta increases with increasing Mg or Be content

    Nighttime air quality under desert conditions

    Get PDF
    Nighttime concentrations of the gas phase nitrate radical (NO3) were successfully measured during a four week field campaign in an arid urban location, Reno Nevada, using long-path Differential Optical Absorbance Spectrometry (DOAS). While typical concentrations of NO3 ranged from 5 to 20ppt, elevated concentrations were observed during a wildfire event. Horizontal mixing in the free troposphere was considerable because the sampling site was above the stable nocturnal boundary layer every night and this justified a box modeling approach. Process analysis of box model simulations showed NO3 accounted for approximately half of the loss of internal olefins, 60% of the isoprene loss, and 85% of the α-pinene loss during the nighttime hours during a typical night of the field study. The NO3+aldehyde reactions were not as important as anticipated. On a polluted night impacted by wildfires upwind of the sampling location, NO3 reactions were more important. Model simulations overpredicted NO2 concentrations for both case studies and inorganic chemistry was the biggest influence on NO3 concentrations and on nitric acid formation. The overprediction may be due to additional NO2 loss processes that were not included in the box model, as deposition and N2O5 uptake had no significant effect on NO2 levels

    Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    Get PDF
    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products

    Study of the third order nonlinear optical properties of Zn1−xMgxSe and Cd1−xMgxSe crystals

    Get PDF
    Third order nonlinear optical susceptibilities χ<3> of ternary Zn1−xMgxSe and Cd1−xMgxSe crystals have been measured using standard degenerate four-wave mixing (DFWM) method at 532 nm. The nonlinear transmission technique has been applied to check if our crystals exhibit two-photon absorption. The studied Zn1−xMgxSe and Cd1−xMgxSe solid solutions were grown from the melt by the modified high-pressure Bridgman method. For both crystals the energy gap increases with increasing Mg content. In the case of Zn1−xMgxSe, it was found that the value of third order nonlinear optical susceptibility χ<3> decreases with increasing Mg content. An explanation of this behaviour results from the dependence of optical nonlinearities on the energy band gap Eg of the studied crystals. In the case of Cd1txMgxSe with low content of Mg, no response was observed for the studied wavelength since the energy gap in such crystals is smaller than the photon energy of the used laser radiation. It was also found that the value of third order nonlinear optical susceptibility χ<3> for Cd0.70Mg0.30Se is higher than for Zn0.67Mg0.33Se. This behaviour can be understood if one take into consideration that the free carrier concentration in Cd1−xMgxSe samples is about four orders of magnitude higher than that in Zn1txMgxSe ones with comparable Mg content respectively. It is commonly known that when the electric conductivity increases, the values of nonlinear optical properties increase. From the performed measurements one can conclude that the incorporation of Mg as constituent into ZnSe and CdSe crystals leads to a change of the third order nonlinear optical susceptibilities

    The scenario of two-dimensional instabilities of the cylinder wake under EHD forcing: A linear stability analysis

    Get PDF
    We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared

    Nonlinear optical properties of thiazolidinone derivatives

    Get PDF
    Thiazolidinone derivatives were synthesized and their physicochemical properties are determined by absorption, H NMR spectroscopies. The third order nonlinear optical properties of thiazolidinone containing compounds were investigated in solutions using degenerate four wave mixing (DFWM) method at 532 nm

    Meniscal tissue explants response depends on level of dynamic compressive strain

    Get PDF
    SummaryObjectiveFollowing partial meniscectomy, the remaining meniscus is exposed to an altered loading environment. In vitro 20% dynamic compressive strains on meniscal tissue explants has been shown to lead to an increase in release of glycosaminoglycans from the tissue and increased expression of interleukin-1α (IL-1α). The goal of this study was to determine if compressive loading which induces endogenously expressed IL-1 results in downstream changes in gene expression of anabolic and catabolic molecules in meniscal tissue, such as MMP expression.MethodRelative changes in gene expression of MMP-1, MMP-3, MMP-9, MMP-13, A Disintegrin and Metalloproteinase with ThromboSpondin 4 (ADAMTS4), ADAMTS5, TNFα, TGFβ, COX-2, Type I collagen (COL-1) and aggrecan and subsequent changes in the concentration of prostaglandin E2 released by meniscal tissue in response to varying levels of dynamic compression (0%, 10%, and 20%) were measured. Porcine meniscal explants were dynamically compressed for 2h at 1Hz.Results20% dynamic compressive strains upregulated MMP-1, MMP-3, MMP-13 and ADAMTS4 compared to no dynamic loading. Aggrecan, COX-2, and ADAMTS5 gene expression were upregulated under 10% strain compared to no dynamic loading while COL-1, TIMP-1, and TGFβ gene expression were not dependent on the magnitude of loading.ConclusionThis data suggests that changes in mechanical loading of the knee joint meniscus from 10% to 20% dynamic strain can increase the catabolic activity of the meniscus
    corecore