84 research outputs found
Interpreting Adversarially Trained Convolutional Neural Networks
We attempt to interpret how adversarially trained convolutional neural
networks (AT-CNNs) recognize objects. We design systematic approaches to
interpret AT-CNNs in both qualitative and quantitative ways and compare them
with normally trained models. Surprisingly, we find that adversarial training
alleviates the texture bias of standard CNNs when trained on object recognition
tasks, and helps CNNs learn a more shape-biased representation. We validate our
hypothesis from two aspects. First, we compare the salience maps of AT-CNNs and
standard CNNs on clean images and images under different transformations. The
comparison could visually show that the prediction of the two types of CNNs is
sensitive to dramatically different types of features. Second, to achieve
quantitative verification, we construct additional test datasets that destroy
either textures or shapes, such as style-transferred version of clean data,
saturated images and patch-shuffled ones, and then evaluate the classification
accuracy of AT-CNNs and normal CNNs on these datasets. Our findings shed some
light on why AT-CNNs are more robust than those normally trained ones and
contribute to a better understanding of adversarial training over CNNs from an
interpretation perspective.Comment: To apper in ICML1
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
Timely accurate traffic forecast is crucial for urban traffic control and
guidance. Due to the high nonlinearity and complexity of traffic flow,
traditional methods cannot satisfy the requirements of mid-and-long term
prediction tasks and often neglect spatial and temporal dependencies. In this
paper, we propose a novel deep learning framework, Spatio-Temporal Graph
Convolutional Networks (STGCN), to tackle the time series prediction problem in
traffic domain. Instead of applying regular convolutional and recurrent units,
we formulate the problem on graphs and build the model with complete
convolutional structures, which enable much faster training speed with fewer
parameters. Experiments show that our model STGCN effectively captures
comprehensive spatio-temporal correlations through modeling multi-scale traffic
networks and consistently outperforms state-of-the-art baselines on various
real-world traffic datasets.Comment: Proceedings of the 27th International Joint Conference on Artificial
Intelligenc
Reinforced Continual Learning
Most artificial intelligence models have limiting ability to solve new tasks
faster, without forgetting previously acquired knowledge. The recently emerging
paradigm of continual learning aims to solve this issue, in which the model
learns various tasks in a sequential fashion. In this work, a novel approach
for continual learning is proposed, which searches for the best neural
architecture for each coming task via sophisticatedly designed reinforcement
learning strategies. We name it as Reinforced Continual Learning. Our method
not only has good performance on preventing catastrophic forgetting but also
fits new tasks well. The experiments on sequential classification tasks for
variants of MNIST and CIFAR-100 datasets demonstrate that the proposed approach
outperforms existing continual learning alternatives for deep networks
- …