12,111 research outputs found

    Effective tuning of exciton polarization splitting in coupled quantum dots

    Full text link
    The polarization splitting of the exciton ground state in two laterally coupled quantum dots under an in-plane electric field is investigated and its effective tuning is designed. It is found that there are significant Stark effect and anticrossing in energy levels. Due to coupling between inter- and intra-dot states, the absolute value of polarization splitting is significantly reduced, and it could be tuned to zero by the electric field for proper inter-dot separations. Our scheme is interesting for the research on the quantum dots-based entangled-photon source.Comment: 4 pages, 2 figures, to appear in Appl. Phys. Let

    Effects of arbitrarily directed field on spin phase oscillations in biaxial molecular magnets

    Full text link
    Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle. The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation, and complemented by exactly numerical diagonalization. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factor are obtained for the entire region of the direction of the field. Our results show that the tunnel splitting oscillates with the field for the small field angle, while for the large field angle the oscillation is completely suppressed. This distinct angular dependence, together with the dependence of the tunnel splitting on the field strengh, provide an independent test for spin-parity effects in biaxial molecular magnets. The analytical results for the molecular Fe8_{8} magnet, are found to be in good areement with the numerical simulations, which suggests that even the molecular magnet with total spin S=10 is large enough to be treated as a giant spin system.Comment: 19 pages, 5 figure

    Spin tunneling properties in mesoscopic magnets: effects of a magnetic field

    Full text link
    The tunneling of a giant spin at excited levels is studied theoretically in mesoscopic magnets with a magnetic field at an arbitrary angle in the easy plane. Different structures of the tunneling barriers can be generated by the magnetocrystalline anisotropy, the magnitude and the orientation of the field. By calculating the nonvacuum instanton solution explicitly, we obtain the tunnel splittings and the tunneling rates for different angle ranges of the external magnetic field (θH=π/2\theta_{H}=\pi/2 and π/2<θH<π\pi/2<\theta_{H}<\pi). The temperature dependences of the decay rates are clearly shown for each case. It is found that the tunneling rate and the crossover temperature depend on the orientation of the external magnetic field. This feature can be tested with the use of existing experimental techniques.Comment: 27 pages, 4 figures, accepted by Euro. Phys. J.

    Field-dependent quantum nucleation of antiferromagnetic bubbles

    Full text link
    The phenomenon of quantum nucleation is studied in a nanometer-scale antiferromagnet with biaxial symmetry in the presence of a magnetic field at an arbitrary angle. Within the instanton approach, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively. Our results show that the rate of quantum nucleation and the crossover temperature from thermal-to-quantum transitions depend on the orientation and strength of the field distinctly, which can be tested with the use of existing experimental techniques.Comment: 21 pages, 5 figures, Final version and accepted by Eur. Phys. J

    Low energy exciton states in a nanoscopic semiconducting ring

    Full text link
    We consider an effective mass model for an electron-hole pair in a simplified confinement potential, which is applicable to both a nanoscopic self-assembled semiconducting InAs ring and a quantum dot. The linear optical susceptibility, proportional to the absorption intensity of near-infrared transmission, is calculated as a function of the ring radius % R_0. Compared with the properties of the quantum dot corresponding to the model with a very small radius R0R_0, our results are in qualitative agreement with the recent experimental measurements by Pettersson {\it et al}.Comment: 4 pages, 4 figures, revised and accepted by Phys. Rev.

    Spin-dependent Rotating Wigner Molecules in Quantum dots

    Full text link
    The spin-dependent trial wave functions with rotational symmetry are introduced to describe rotating Wigner molecular states with spin degree of freedom in four- and five-electron quantum dots under magnetic fields. The functions are constructed with unrestricted Hartree-Fock orbits and projection technique in long-range interaction limit. They highly overlap with the exact-diagonalized ones and give the accurate energies in strong fields. The zero points, i.e. vortices of the functions have straightforward relations to the angular momenta of the states. The functions with different total spins automatically satisfy the angular momentum transition rules with the increase of magnetic fields and explicitly show magnetic couplings and characteristic oscillations with respect to the angular momenta. Based on the functions, it is demonstrated that the entanglement entropies of electrons depend on the z-component of total spin and rise with the increase of angular momenta
    • …
    corecore