18 research outputs found

    Visualization 1.mp4

    No full text
    Islet in ACE with blood flow

    Tailoring Defect Density in UiO-66 Frameworks for Enhanced Pb(II) Adsorption

    No full text
    Defect engineering of metal organic frameworks offers potential prospects for tuning their features toward particular applications. Herein, two series of defective UiO-66 frameworks were synthesized via changing the concentration of the linker and synthetic temperature of the reaction. These defective materials showed a significant improvement in the capability of Pb­(II) removal from wastewater. This strategy for defect engineering not only created additional active sites, more open framework, and enhanced porosity but also exposed more oxygen groups, which served as the adsorption sites to improve Pb­(II) adsorption. A relationship among degree of defects, texture features, and performances for Pb­(II) removal was successfully developed as a proof-of-concept, highlighting the importance of defect engineering in heavy metal remediation. To investigate the kinetic and adsorption isotherms, we performed adsorption experiments influenced by the time and concentration of the adsorbate, respectively. For the practicality of the materials, the most significant parameters such as pH, temperature, adsorbent concentration, selectivity, and recyclability as well as simulated natural surface water were also examined. This study provides a clue for the researchers to design other advanced defective materials for the enhancement of adsorption performance by tuning the defect engineering

    Selective and Light-Enhanced Au(III) Recovery by a Porphyrin-Based Metal–Organic Framework: Performance and Underlying Mechanisms

    No full text
    Recovering gold from unconventional sources, such as electronic waste, offers significant environmental and economic benefits. Exploiting materials and methods with high efficiency and selectivity is demanding. Herein, we reported a novel light-enhanced Au(III) recovery process using a porphyrin-based metal–organic framework (PCN-224). Our results showed that PCN-224 exhibited a remarkable Au(III) recovery capacity of up to 2613 mg/g when exposed to visible light irradiation, which was 3 times higher than that in the dark. Furthermore, light irradiation also improved the Au selectivity of PCN-224 against coexisting ions, including Zn2+, Mg2+, Cd2+, Ni2+, Hg2+, Cu2+, Pb2+, Al3+, and Fe3+. Based on characterization and kinetic analysis, an adsorption–reduction mechanism was proposed for the light-enhanced Au recovery, and porphyrin linkers played an essential role as active sites for both adsorption and reduction. To further protect the porphyrin linkers in PCN-224, acetic acid was introduced as a representative electron donor molecule in electronic waste, which could further enhance the Au(III) recovery capacity to 4946 mg/g. In addition, we demonstrated that PCN-224 and its light-enhanced feature also performed effectively in the actual leaching solution of waste electrical and electronic equipment, and the framework was successfully reused for at least six cycles. Overall, our discoveries could inspire the design of more outstanding materials and the artful use of clean energy to recover precious metals while minimizing the environmental impact

    Chemical Transformations of Nanosilver in Biological Environments

    No full text
    The widespread use of silver nanoparticles (Ag-NPs) in consumer and medical products provides strong motivation for a careful assessment of their environmental and human health risks. Recent studies have shown that Ag-NPs released to the natural environment undergo profound chemical transformations that can affect silver bioavailability, toxicity, and risk. Less is known about Ag-NP chemical transformations in biological systems, though the medical literature clearly reports that chronic silver ingestion produces argyrial deposits consisting of silver-, sulfur-, and selenium-containing particulate phases. Here we show that Ag-NPs undergo a rich set of biochemical transformations, including accelerated oxidative dissolution in gastric acid, thiol binding and exchange, photoreduction of thiol- or protein-bound silver to secondary zerovalent Ag-NPs, and rapid reactions between silver surfaces and reduced selenium species. Selenide is also observed to rapidly exchange with sulfide in preformed Ag<sub>2</sub>S solid phases. The combined results allow us to propose a conceptual model for Ag-NP transformation pathways in the human body. In this model, argyrial silver deposits are not translocated engineered Ag-NPs, but rather secondary particles formed by partial dissolution in the GI tract followed by ion uptake, systemic circulation as organo-Ag complexes, and immobilization as zerovalent Ag-NPs by photoreduction in light-affected skin regions. The secondary Ag-NPs then undergo detoxifying transformations into sulfides and further into selenides or Se/S mixed phases through exchange reactions. The formation of secondary particles in biological environments implies that Ag-NPs are not only a product of industrial nanotechnology but also have long been present in the human body following exposure to more traditional chemical forms of silver

    Synergistic Effects of Organic Ligands and Visible Light on the Reductive Dissolution of CeO<sub>2</sub> Nanoparticles: Mechanisms and Implications for the Transformation in Plant Surroundings

    No full text
    Cerium oxide (CeO2) nanoparticles are one of the most important engineered nanomaterials with demonstrated applications in industry. Although numerous studies have reported the plant uptake of CeO2, its fate and transformation pathways and mechanisms in plant-related conditions are still not well understood. This study investigated the stability of CeO2 in the presence of organic ligands (maleic and citric acid) and light irradiation. For the first time, we found that organic ligands and visible light had a synergistic effect on the reductive dissolution of CeO2 with up to 30% Ce releases after 3 days, which is the highest release reported so far under environmental conditions. Moreover, the photoinduced dissolution of CeO2 in the presence of citrate was much higher than that in maleate, which are adsorbed on the surface of CeO2 through inner-sphere and outer-sphere complexation, respectively. A novel ligand-dependent photodissolution mechanism was proposed and highlighted: upon electron–hole separation under light irradiation, the inner-sphere complexed citrate is more capable of consuming the hole, prolonging the life of electrons for the reduction of Ce(IV) to Ce(III). Finally, reoxidation of Ce(III) by oxygen was observed and discussed. This comprehensive work advances our knowledge of the fate and transformation of CeO2 in plant surroundings

    Biological and Environmental Transformations of Copper-Based Nanomaterials

    No full text
    Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from <i>in vitro</i> studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4–5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing because of ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution–reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO-NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H<sub>2</sub>O<sub>2</sub> oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species

    Synergistic Effect of Metal Cations and Visible Light on 2D MoS<sub>2</sub> Nanosheet Aggregation

    No full text
    Aggregation significantly influences the transport, transformation, and bioavailability of engineered nanomaterials. Two–dimensional MoS2 nanosheets are one of the most well-studied transition-metal dichalcogenide nanomaterials. Nonetheless, the aggregation behavior of this material under environmental conditions is not well understood. Here, we investigated the aggregation of single-layer MoS2 (SL-MoS2) nanosheets under a variety of conditions. Trends in the aggregation of SL-MoS2 are consistent with classical Derjaguin–Landau–Verwey–Overbeek (DLVO) colloidal theory, and the critical coagulation concentrations of cations follow the order of trivalent (Cr3+) 2+, Mg2+, Cd2+) +, K+). Notably, Pb2+ and Ag+ destabilize MoS2 nanosheet suspensions much more strongly than do their divalent and monovalent counterparts. This effect is attributable to Lewis soft acid–base interactions of cations with MoS2. Visible light irradiation synergistically promotes the aggregation of SL-MoS2 nanosheets in the presence of cations, which was evident even in the presence of natural organic matter. The light-accelerated aggregation was ascribed to dipole–dipole interactions due to transient surface plasmon oscillation of electrons in the metallic 1T phase, which decrease the aggregation energy barrier. These results reveal the phase-dependent aggregation behaviors of engineered MoS2 nanosheets with important implications for environmental fate and risk

    Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS<sub>2</sub> Nanosheets via Precise Thickness Control

    No full text
    The demand for highly permeable and selective thin-film composite (TFC) nanofiltration membranes, which are essential for seawater and brackish water softening and resource recovery, is growing rapidly. However, improving and tuning membrane permeability and selectivity simultaneously remain highly challenging owing to the lack of thickness control in polyamide films. In this study, we fabricated a high-performance interlayered TFC membrane through classical interfacial polymerization on a MoS2-coated polyethersulfone substrate. Due to the enhanced confinement effect on the interface degassing and the improved adsorption of the amine monomer by the MoS2 interlayer, the MoS2-interlayered TFC membrane exhibited enhanced roughness and crosslinking. Compared to the control TFC membrane, MoS2-interlayered TFC membranes have a thinner polyamide layer, with thickness ranging from 60 to 85 nm, which can be tuned by altering the MoS2 interlayer thickness. A multilayer permeation model was developed to delineate and analyze the transport resistance and permeability of the MoS2 interlayer and polyamide film through the regression of experimental data. The optimized MoS2-interlayered TFC membrane (0.3-inter) had a 96.8% Na2SO4 rejection combined with an excellent permeability of 15.9 L m–2 h–1 bar–1 (LMH/bar), approximately 2.4 times that of the control membrane (6.6 LMH/bar). This research provides a feasible strategy for the rational design of tunable, high-performance NF membranes for environmental applications
    corecore