7 research outputs found

    Realizing spin-dependent gauge field with biaxial metamaterials

    No full text
    Artificial magnetic field in electromagnetism is becoming an emerging way as a robust control of light based on its geometric and topological nature. Other than demonstrating topological photonics properties in the diffractive regime using photonic crystals or arrays of waveguides, it will be of great interest if similar manipulations can be done simply in the long wavelength limit, in which only a few optical parameters can be used to describe the system, making the future optical component design much easier. Here, by designing and fabricating a metamaterial with split dispersion surface, we provide a straight-forward experimental realization of spin-dependent gauge field in the real space using a biaxial material. A "magnetic force bending" for light of desired pseudospins is visualized experimentally by such a gauge field as a manifestation of optical spin Hall effect. Such a demonstration is potentially useful to develop pseudospin optics, topological components and spin-enabled transformation optical devices

    Three-dimensional Electromagnetic Void Space

    No full text
    We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. The 3D void space is realized by constructing all-dielectric 3D photonic crystals such that the effective permittivity and permeability vanish simultaneously, forming a six-fold Dirac-like point with Dirac-like linear dispersions at the center of the Brillouin Zone. We demonstrate, both theoretically and experimentally, that such a 3D void space exhibits unique properties and rich functionalities absent in any other electromagnetic media, such as boundary-control transmission switching and 3D perfect wave-steering mechanisms. Especially, contrary to the photonic "doping" effect in its two-dimensional counterpart, the 3D void space exhibits an amazing property of "impurity-immunity". Our work paves a road towards the realization of 3D void space where electromagnetic waves can be manipulated in unprecedented ways

    Tailoring Interfaces of All-Carbon Electromagnetic Interference Shielding Materials for Boosting Comprehensive Performance

    No full text
    Electromagnetic interference (EMI) shielding materials with lightweight, high shielding effectiveness, excellent chemical stability, especially minimized secondary electromagnetic pollution, are urgently desired for integrated electronic systems operating in harsh working environments. Here in this study, by systematically engineering and matching the interfacial properties of carbon-based membrane materials, i.e., graphite paper, whisker carbon nanotube paper (WCNT paper), carbon nanotube film (CNT film), bucky paper (BP), and carbon cloth (CC) with three-dimensional (3D) porous carbon nanotube sponge (CNTS), we successfully constructed a series of multifunctional all-carbon EMI shielding materials, which exhibit excellent average shielding effectiveness of over 90 dB with a thickness of about 1 mm and dramatically minimized secondary electromagnetic reflection. Moreover, benefiting from the all-carbon nature and engineered interfaces, our CMC materials also exhibit excellent photothermal and Joule heating performances. These results not only provide guidance for designing advanced multifunctional all-carbon EMI shielding materials but also shed light on the hidden mechanism between interfaces and performances of composite materials

    Non-Abelian gauge field optics

    No full text
    The concept of gauge field is a cornerstone of modern physics and the synthetic gauge field has emerged as a new way to manipulate particles in many disciplines. In optics, several schemes of Abelian synthetic gauge fields have been proposed. Here, we introduce a new platform for realizing synthetic SU(2) non-Abelian gauge fields acting on two-dimensional optical waves in a wide class of anisotropic materials and discover novel phenomena. We show that a virtual non-Abelian Lorentz force arising from material anisotropy can induce light beams to travel along Zitterbewegung trajectories even in homogeneous media. We further design an optical non-Abelian Aharonov-Bohm system which results in the exotic spin density interference effect. We can extract the Wilson loop of an arbitrary closed optical path from a series of gauge fixed points in the interference fringes. Our scheme offers a new route to study SU(2) gauge field related physics using optics

    Tailoring Interfaces of All-Carbon Electromagnetic Interference Shielding Materials for Boosting Comprehensive Performance

    No full text
    Electromagnetic interference (EMI) shielding materials with lightweight, high shielding effectiveness, excellent chemical stability, especially minimized secondary electromagnetic pollution, are urgently desired for integrated electronic systems operating in harsh working environments. Here in this study, by systematically engineering and matching the interfacial properties of carbon-based membrane materials, i.e., graphite paper, whisker carbon nanotube paper (WCNT paper), carbon nanotube film (CNT film), bucky paper (BP), and carbon cloth (CC) with three-dimensional (3D) porous carbon nanotube sponge (CNTS), we successfully constructed a series of multifunctional all-carbon EMI shielding materials, which exhibit excellent average shielding effectiveness of over 90 dB with a thickness of about 1 mm and dramatically minimized secondary electromagnetic reflection. Moreover, benefiting from the all-carbon nature and engineered interfaces, our CMC materials also exhibit excellent photothermal and Joule heating performances. These results not only provide guidance for designing advanced multifunctional all-carbon EMI shielding materials but also shed light on the hidden mechanism between interfaces and performances of composite materials

    Tailoring Interfaces of All-Carbon Electromagnetic Interference Shielding Materials for Boosting Comprehensive Performance

    No full text
    Electromagnetic interference (EMI) shielding materials with lightweight, high shielding effectiveness, excellent chemical stability, especially minimized secondary electromagnetic pollution, are urgently desired for integrated electronic systems operating in harsh working environments. Here in this study, by systematically engineering and matching the interfacial properties of carbon-based membrane materials, i.e., graphite paper, whisker carbon nanotube paper (WCNT paper), carbon nanotube film (CNT film), bucky paper (BP), and carbon cloth (CC) with three-dimensional (3D) porous carbon nanotube sponge (CNTS), we successfully constructed a series of multifunctional all-carbon EMI shielding materials, which exhibit excellent average shielding effectiveness of over 90 dB with a thickness of about 1 mm and dramatically minimized secondary electromagnetic reflection. Moreover, benefiting from the all-carbon nature and engineered interfaces, our CMC materials also exhibit excellent photothermal and Joule heating performances. These results not only provide guidance for designing advanced multifunctional all-carbon EMI shielding materials but also shed light on the hidden mechanism between interfaces and performances of composite materials

    Tailoring Interfaces of All-Carbon Electromagnetic Interference Shielding Materials for Boosting Comprehensive Performance

    No full text
    Electromagnetic interference (EMI) shielding materials with lightweight, high shielding effectiveness, excellent chemical stability, especially minimized secondary electromagnetic pollution, are urgently desired for integrated electronic systems operating in harsh working environments. Here in this study, by systematically engineering and matching the interfacial properties of carbon-based membrane materials, i.e., graphite paper, whisker carbon nanotube paper (WCNT paper), carbon nanotube film (CNT film), bucky paper (BP), and carbon cloth (CC) with three-dimensional (3D) porous carbon nanotube sponge (CNTS), we successfully constructed a series of multifunctional all-carbon EMI shielding materials, which exhibit excellent average shielding effectiveness of over 90 dB with a thickness of about 1 mm and dramatically minimized secondary electromagnetic reflection. Moreover, benefiting from the all-carbon nature and engineered interfaces, our CMC materials also exhibit excellent photothermal and Joule heating performances. These results not only provide guidance for designing advanced multifunctional all-carbon EMI shielding materials but also shed light on the hidden mechanism between interfaces and performances of composite materials
    corecore