20 research outputs found

    New Design Strategy for Reversible Plasticity Shape Memory Polymers with Deformable Glassy Aggregates

    No full text
    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (<i>T</i><sub>g</sub>) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at <i>T</i><sub>d</sub> in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior

    Polyphenol-Reduced Graphene Oxide: Mechanism and Derivatization

    No full text
    In this work, tea polyphenols (TPs) were employed as an environmentally friendly and highly efficient reducer and stabilizer for graphene oxide (GO). The results from XPS, Raman, and conductivity studies of reduced graphene indicated the efficient deoxidization of GO. The adsorption of oxidized TPs onto graphene supplies steric hindrance among graphene sheets to keep them individually dispersed in water and some solvents. To investigate the reduction mechanism, epigallocatechin gallate (EGCG), the primary component of TPs, was used as a model. Characterization by <sup>1</sup>H NMR and FTIR spectroscopies indicated that the gallic units in EGCG were converted to galloyl-derived orthoquinone and the flavonoid structure survived during the reduction. To further enhance the organosolubility of the resultant graphene, derivatization of the graphene was conducted by galloyl-derived orthoquinone–thiol chemistry. The successful derivatization was found to greatly improve the organosolubility of graphene in solvents with low boiling points

    Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds

    No full text
    Reinforcement, recycling, and functional applications are three important issues in elastomer science and engineering. It is of great importance, but rarely achievable, to integrate these properties into elastomers. Herein, we report a simple way to prepare covalently cross-linked yet recyclable, robust, and macroscopically responsive elastomer vitrimers by engineering exchangeable bonds into rubber–carbon nanodot (CD) interphase using CD as high-functionality cross-linker. The cross-linked rubbers can rearrange the network topology through transesterification reactions in the interphase, conferring the materials the ability to be recycled, reshaped, and welded. The relatively short chains bridging adjacent CD are highly stretched and preferentially rupture to dissipate energy under external force, resulting in remarkable improvements on the mechanical properties. Moreover, the malleable and welding properties allow the samples to access reconfigurable/multiple shape memory effects

    Interphase Percolation Mechanism Underlying Elastomer Reinforcement

    No full text
    Glassy interphase has been claimed to be of vital importance for mechanical reinforcement of elastomer nanocomposites (ENCs), but the evolution of interphase topology in correlation to reinforcement percolation remains uncertain. Here, an accurate interfacial regulation strategy upon implementing an interphase percolation mechanism is exploited to realize percolation of mechanical performance toward striking elastomer reinforcement. Architecture design of interfacial metal–ligand bridges accomplishes firm anchoring between elastomer skeleton and carbon nanodots, leading to the formation of interfacial metal-enriched regions. The volume fraction of the interfacial region systemically enlarges upon increase of interfacial bridges, which finally overlaps with neighboring domains to form a penetrating interphase. The topological evolution of the interfacial region is quantitatively monitored upon small-angle X-ray scattering and dielectric measurements, which exhibits a similar percolation behavior in sync with that of macroscopic mechanical performance. Furthermore, the interphase exhibits much slower relaxation dynamics than in bulk polymer, which significantly improves the network rigidity and hence accounts for the prominent elastomer reinforcement. This investigation corroborates that the formation of penetrating interphase may be an executable mechanism to induce the reinforcement percolation of ENCs. We further envision that the implementation of interphase percolation mechanism can be a universal avenue to afford rationalized optimization of ENCs

    Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds

    No full text
    Reinforcement, recycling, and functional applications are three important issues in elastomer science and engineering. It is of great importance, but rarely achievable, to integrate these properties into elastomers. Herein, we report a simple way to prepare covalently cross-linked yet recyclable, robust, and macroscopically responsive elastomer vitrimers by engineering exchangeable bonds into rubber–carbon nanodot (CD) interphase using CD as high-functionality cross-linker. The cross-linked rubbers can rearrange the network topology through transesterification reactions in the interphase, conferring the materials the ability to be recycled, reshaped, and welded. The relatively short chains bridging adjacent CD are highly stretched and preferentially rupture to dissipate energy under external force, resulting in remarkable improvements on the mechanical properties. Moreover, the malleable and welding properties allow the samples to access reconfigurable/multiple shape memory effects

    Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds

    No full text
    Reinforcement, recycling, and functional applications are three important issues in elastomer science and engineering. It is of great importance, but rarely achievable, to integrate these properties into elastomers. Herein, we report a simple way to prepare covalently cross-linked yet recyclable, robust, and macroscopically responsive elastomer vitrimers by engineering exchangeable bonds into rubber–carbon nanodot (CD) interphase using CD as high-functionality cross-linker. The cross-linked rubbers can rearrange the network topology through transesterification reactions in the interphase, conferring the materials the ability to be recycled, reshaped, and welded. The relatively short chains bridging adjacent CD are highly stretched and preferentially rupture to dissipate energy under external force, resulting in remarkable improvements on the mechanical properties. Moreover, the malleable and welding properties allow the samples to access reconfigurable/multiple shape memory effects

    Sustainable Carbon Nanodots with Tunable Radical Scavenging Activity for Elastomers

    No full text
    The application of polymers as an essential class of material was greatly inhibited due to the aging failure of these versatile materials during normal use. Hence, it is generally recognized that stabilization against thermo-oxidative aging is indispensable to extend the service life of polymers for long-term applications. However, toxicity and pollution of the state-of-the-art antiaging technologies have long been puzzles in the polymer industry. Herein, sustainable carbon nanodots (CDs), synthesized by facile and cost-effective microwave-assisted pyrolysis, are used for first time as radical scavengers to resist the thermo-oxidative aging of elastomers. We have demonstrated that incorporation of the resultant CDs could be green and generic radical scavengers toward highly aging-resistant elastomers. Furthermore, by controlling the photoluminescent quantum yield of the CDs with various passivated agents, tunable radical scavenging activity was achieved. We established for the first time that the aging resistance originates from the prominent reactive radical scavenging activity of the CDs, which was rationally controlled by their photoluminescent quantum yield

    Enabling Design of Advanced Elastomer with Bioinspired Metal–Oxygen Coordination

    No full text
    It poses a huge challenge to expand the application gallery of rubbers into advanced smart materials and achieve the reinforcement simultaneously. In the present work, inspired by the metal–ligand complexations of mussel byssus, ferric ion was introduced into an oxygen-abundant rubber network to create additional metal–oxygen coordination cross-links. Such complexation has been revealed to be highly efficient in enhancing the strength and toughness of the rubbers. Significantly, such complexation also enables the functionalization of the rubber into highly damping or excellent multishape memory materials. We envision that the present work offers an efficient yet facile way of creating advanced elastomers based on industrially available diene-based rubber

    Carbon Nanodots as High-Functionality Cross-Linkers for Bioinspired Engineering of Multiple Sacrificial Units toward Strong yet Tough Elastomers

    No full text
    It is still a huge challenge to implement multiple energy dissipation mechanisms into polymers toward strong yet tough elastomers. Here, we describe a biomimetic design for diene-rubber by incorporating carbon nanodots (CDs) into a chemically cross-linked network. The high-functionality CDs serve as both physical and chemical cross-linkers, which give rise to a covalent network that interlinks multiple chains with nonuniform lengths, and interfacial hydrogen bonds. Upon stretching, the hydrogen bonds preferentially detach, leading to the orientation of short covalent bridging, which contributes the forward onset of strain-induced crystallization. The subsequent rupture of short covalent bridging, together with the successive detachment of hydrogen bonds result in further orientation of hidden length, which enhances the crystallinity. Consequently, the samples exhibit an integrated improvement of strength and toughness, and intact stretchability. We envisage that this strategy may provide a new avenue to implement biomimetic design for high-performance elastomers through multiple energy dissipation mechanisms

    Engineering of β‑Hydroxyl Esters into Elastomer–Nanoparticle Interface toward Malleable, Robust, and Reprocessable Vitrimer Composites

    No full text
    Rubbers are strategically important due to their indispensable applications in the daily life and high-tech fields. For their real-world applications, the covalent cross-linking, reinforcement, and malleability of rubbers are three important issues because they are closely related to the elasticity, mechanical properties, and recycling of the rubber materials. Herein, we demonstrate a simple way to prepare covalently cross-linked yet recyclable and robust elastomeric vitrimer composites by incorporating exchangeable β-hydroxyl ester bonds into the elastomer–nanoparticle interface using epoxy group-functionalized silica (Esilica) as both cross-linker and reinforcement in carboxyl group-grafted styrene-butadiene rubber (CSBR). The Esilica-cross-linked CSBR composites exhibit promising mechanical properties due to the covalent linkages in the interface and fine silica dispersion in the matrix. In addition, the interface can undergo dynamic reshuffling via transesterification reactions to alter network topology at high temperatures, conferring the resulting composites the ability to be reshaped and recycled
    corecore