52 research outputs found

    Table_1_Epstein-Barr Virus-Positive T/NK-Cell Lymphoproliferative Diseases in Chinese Mainland.DOCX

    No full text
    Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders (EBV+ T/NK LPD) encompass a heterogeneous group of disorders, including chronic active Epstein–Barr virus infection (CAEBV), Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH), systemic EBV+ T-cell lymphoma of childhood and hydroa vacciniforme-like lymphoproliferative disorder (HVLPD) and so on, predominantly affecting children and young adults with high mortality. Patients with EBV+ T/NK LPD have overlapping clinical symptoms as well as histologic and immunophenotypic features. In this review, we summarized the clinical features of EBV+ T/NK LPD in Chinese patients from the published articles.</p

    Table2.PDF

    No full text
    <p>Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method (bacterial pathogen-mass spectrometry, BP-MS) that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204) of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167), and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93) two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167) of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.</p

    The general sociodemographic characteristics and disease burden of HCV infection during pediatric hospitalizations from December 2015 to December 2020.

    No full text
    The general sociodemographic characteristics and disease burden of HCV infection during pediatric hospitalizations from December 2015 to December 2020.</p

    Table3.PDF

    No full text
    <p>Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method (bacterial pathogen-mass spectrometry, BP-MS) that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204) of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167), and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93) two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167) of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.</p

    Image1.PDF

    No full text
    <p>Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method (bacterial pathogen-mass spectrometry, BP-MS) that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204) of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167), and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93) two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167) of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.</p

    The general sociodemographic characteristics of pediatric patients with TORCH infections during hospitalization from December 2015 to December 2020.

    No full text
    The general sociodemographic characteristics of pediatric patients with TORCH infections during hospitalization from December 2015 to December 2020.</p

    Molecular Typing and Epidemiology Profiles of Human Adenovirus Infection among Paediatric Patients with Severe Acute Respiratory Infection in China

    No full text
    <div><p>Background</p><p>Human adenoviruses (HAdVs) have been recognised as pathogens that cause a broad spectrum of diseases. The studies on HAdV infection among children with severe acute respiratory infection (SARI) are limited.</p><p>Objective</p><p>To investigate the prevalence, epidemiology, and genotype of HAdV among children with SARI in China.</p><p>Study Design</p><p>Nasopharyngeal aspirates (NPAs) or induced sputum (IS) was collected from hospitalised children with SARIs in Beijing (representing Northern China; n = 259) and Zhejiang Province (representing Eastern China; n = 293) from 2007 to 2010. The prevalence of HAdV was screened by polymerase chain reaction (PCR), followed by sequence typing of PCR fragments that targeted the second half of the hexon gene. In addition, co-infection with other human respiratory viruses, related epidemiological profiles and clinical presentations were investigated.</p><p>Results and Conclusions</p><p>In total, 76 (13.8%) of 552 SARI patients were positive for HAdV, and the infection rates of HAdV in Northern and Eastern China were 20.1% (n = 52) and 8.2% (n = 24), respectively. HAdV co-infection with other respiratory viruses was frequent (infection rates: Northern China, 90.4%; Eastern China, 70.8%). The peak seasons for HAdV-B infection was winter and spring. Additionally, members of multiple species (Human mastadenovirus B, C, D and E) were circulating among paediatric patients with SARI, of which HAdV-B (34/52; 65.4%) and HAdV-C (20/24, 83.3%) were the most predominant in Northern and Eastern China, respectively. These findings provide a benchmark for future epidemiology and prevention strategies for HAdV.</p></div
    • …
    corecore