5,928 research outputs found

    Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture

    Get PDF
    For long distance orbital angular momentum (OAM) based transmission, the conventional whole beam receiving scheme encounters the difficulty of large aperture due to the divergence of OAM beams. We propose a novel partial receiving scheme, using a restricted angular aperture to receive and demultiplex multi-OAM-mode beams. The scheme is theoretically analyzed to show that a regularly spaced OAM mode set remain orthogonal and therefore can be de-multiplexed. Experiments have been carried out to verify the feasibility. This partial receiving scheme can serve as an effective method with both space and cost savings for the OAM communications. It is applicable to both free space OAM optical communications and radio frequency (RF) OAM communications

    Constructing the general partial waves and renormalization in EFT

    Full text link
    We construct the general partial wave amplitude basis for the N→MN\to M scattering, which consists of Poincar\'e Clebsch-Gordan coefficients, with Lorentz invariant forms given in terms of spinor-helicity variables. The inner product of the Clebsch-Gordan coefficients is defined, which converts on-shell phase space integration into an algebraic problem. We also develop the technique of partial wave expansions of arbitrary amplitudes, including those with infrared divergence. These are applied to the computation of anomalous dimension matrix for general effective operators, where unitarity cuts for the loop amplitudes, with an arbitrary number of external particles, are obtained via partial wave expansion.Comment: 6 pages, 1 figure, 1 tabl
    • …
    corecore