3,487 research outputs found

    Analytic properties of force-free jets in the Kerr spacetime -- III: uniform field solution

    Full text link
    The structure of steady axisymmetric force-free magnetosphere of a Kerr black hole (BH) is governed by a second-order partial differential equation of AϕA_\phi depending on two "free" functions Ω(Aϕ)\Omega(A_\phi) and I(Aϕ)I(A_\phi), where AϕA_\phi is the ϕ\phi component of the vector potential of the electromagnetic field, Ω\Omega is the angular velocity of the magnetic field lines and II is the poloidal electric current. In this paper, we investigate the solution uniqueness. Taking asymptotically uniform field as an example, analytic studies imply that there are infinitely many solutions approaching uniform field at infinity, while only a unique one is found in general relativistic magnetohydrodynamic simulations. To settle down the disagreement, we reinvestigate the structure of the governing equation and numerically solve it with given constraint condition and boundary condition. We find that the constraint condition (field lines smoothly crossing the light surface (LS)) and boundary conditions at horizon and at infinity are connected via radiation conditions at horizon and at infinity, rather than being independent. With appropriate constraint condition and boundary condition, we numerically solve the governing equation and find a unique solution. Contrary to naive expectation, our numerical solution yields a discontinuity in the angular velocity of the field lines and a current sheet along the last field line crossing the event horizon. We also briefly discuss the applicability of the perturbation approach to solving the governing equation

    Neutrino and anti-neutrino transport in accretion disks

    Full text link
    We numerically solve the one dimensional Boltzmann equation of the neutrino and anti-neutrino transport in accretion disks and obtain the fully energy dependent and direction dependent neutrino and anti-neutrino emitting spectra, under condition that the distribution of the mass density,temperature and chemical components are given. Then, we apply the resulting neutrino and anti-neutrino emitting spectra to calculate the corresponding annihilation rate of neutrino pairs above the neutrino dominated accretion disk and find that the released energy resulting from the annihilation of neutrino pairs can not provide sufficient energy for the most energetic short gamma ray bursts whose isotropic luminosity can be as high as 105210^{52} ergs/s unless the high temperature zone where the temperature is beyond 10 MeV can stretch over 200 km in the disk. We also compare the resulting luminosity of neutrinos and anti-neutrinos with the results from the two commonly used approximate treatment of the neutrino and anti-neutrino luminosity: the Fermi-Dirac black body limit and a simplified model of neutrino transport, i.e., the gray body model, and find that both of them overestimate the neutrino/anti-neutrino luminosity and their annihilation rate greatly. Additionally, as did in Sawyer (2003), we also check the validity of the two stream approximation, and find that it is a good approximation to high accuracy.Comment: Phys. Rev. D in press, 15 preprint papers, 5 figure