52 research outputs found
THE IMPORTANCE OF APPLICABILITY PRINCIPLE IN PLANT COMBINATION IS DISCUSSED — THE EFFECT OF NATIVE PLANTS WITH OBVIOUS APPLICABILITY CHARACTERISTICS ON ENVIRONMENTAL LANDSCAPE
The principle of plant suitability is of great significance to plant configuration. The plant configuration that meets the principle of plant suitability can have an excellent effect on the environment in both ecological effect and ornamental effect. However, the plant configuration that violates the principle of plant applicability can not only cause ecological damage to the environment, but also bring serious economic losses to the society. Nowadays, the unique value and characteristics of native plants have been gradually discovered by people, and native plants have begun to integrate into the urban landscape planning and design. The outstanding applicability of native plants has brought visible ecological and economic benefits to the urban environmental landscape. In plant allocation, we should give full consideration to the applicability characteristics of local plants, so that local plants can have a more positive impact on the environmental landscape and give play to the important value of local plants
Effect of Land Cultivation on Soil Nutrient Sedimentation in Water at Southern China
Soil erosion associated with land cultivation exerts a great impact on ecological environment. Such an impact is specific of land, crop, tillage, management and so on. This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China. Two sedimentation sites adjacent to the uncultivated (S1) and cultivated upland (S2) were selected and samples were analyzed. Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments. Soil organic matter, nitrogen and phosphorus contents decreased with the increasing depth. There was no significant difference between two sediments in organic matter and nitrogen contents, but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1. The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality. Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures
NetDistiller: Empowering Tiny Deep Learning via In-Situ Distillation
Boosting the task accuracy of tiny neural networks (TNNs) has become a
fundamental challenge for enabling the deployments of TNNs on edge devices
which are constrained by strict limitations in terms of memory, computation,
bandwidth, and power supply. To this end, we propose a framework called
NetDistiller to boost the achievable accuracy of TNNs by treating them as
sub-networks of a weight-sharing teacher constructed by expanding the number of
channels of the TNN. Specifically, the target TNN model is jointly trained with
the weight-sharing teacher model via (1) gradient surgery to tackle the
gradient conflicts between them and (2) uncertainty-aware distillation to
mitigate the overfitting of the teacher model. Extensive experiments across
diverse tasks validate NetDistiller's effectiveness in boosting TNNs'
achievable accuracy over state-of-the-art methods. Our code is available at
https://github.com/GATECH-EIC/NetDistiller
Gen-NeRF: Efficient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design
Novel view synthesis is an essential functionality for enabling immersive
experiences in various Augmented- and Virtual-Reality (AR/VR) applications, for
which generalizable Neural Radiance Fields (NeRFs) have gained increasing
popularity thanks to their cross-scene generalization capability. Despite their
promise, the real-device deployment of generalizable NeRFs is bottlenecked by
their prohibitive complexity due to the required massive memory accesses to
acquire scene features, causing their ray marching process to be
memory-bounded. To this end, we propose Gen-NeRF, an algorithm-hardware
co-design framework dedicated to generalizable NeRF acceleration, which for the
first time enables real-time generalizable NeRFs. On the algorithm side,
Gen-NeRF integrates a coarse-then-focus sampling strategy, leveraging the fact
that different regions of a 3D scene contribute differently to the rendered
pixel, to enable sparse yet effective sampling. On the hardware side, Gen-NeRF
highlights an accelerator micro-architecture to maximize the data reuse
opportunities among different rays by making use of their epipolar geometric
relationship. Furthermore, our Gen-NeRF accelerator features a customized
dataflow to enhance data locality during point-to-hardware mapping and an
optimized scene feature storage strategy to minimize memory bank conflicts.
Extensive experiments validate the effectiveness of our proposed Gen-NeRF
framework in enabling real-time and generalizable novel view synthesis.Comment: Accepted by ISCA 202
Stress-Activated Kinase MKK7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention
BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Kruppel-like factor-4. This complex leads to Kruppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Kruppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.British Heart Foundation [PG/09/052/27833, PG/14/71/31063, PG/12/76/29852, FS/15/16/31477]; Medical Research Council [G1002082, MC_PC_13070]; American Heart Association National Scientist Development Grants [12SDG12070077]; National Basic Research Program of China [2012CB518000]SCI(E)ARTICLE7683-69913
Case Report: Mycobacterium kansasii causing infective endocarditis explored by metagenomic next-generation sequencing
In this report, we describe the first case of infective endocarditis caused by Mycobacterium kansasii in a 45-year-old male patient who presented with a 10-day fever and decompensated cirrhosis. Despite negative results in blood culture and pathology, we employed metagenomic next-generation sequencing (mNGS) to analyze the genome sequences of both the host and microbe. The copy number variation (CNV) indicated a high risk of liver disease in the patient, which correlated with biochemical examination findings. Notably, M. kansasii sequences were detected in peripheral blood samples and confirmed through Sanger sequencing. Unfortunately, the patient’s condition deteriorated, leading to his demise prior to heart surgery. Nevertheless, we propose that mNGS could be a novel approach for diagnosing M. kansasii infection, particularly in cases where blood culture and pathology results are unavailable. It is important to consider M. kansasii infection as a potential cause of endocarditis and initiate appropriate anti-infection treatment
Non-invasive prediction of preeclampsia using the maternal plasma cell-free DNA profile and clinical risk factors
BackgroundPreeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors.MethodsWe retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24–45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher’s exact test and Mann–Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors.ResultsBy using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively.ConclusionIncorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future
Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China
Understanding the change pattern of soil respiration (SR) and its drivers under different bamboo species and land management practices is critical for predicting soil CO2 emission and evaluating the carbon budget of bamboo forest ecosystems. A 24-month field study was performed in subtropical China to monitor SR in experimental plots of local bamboo (Phyllostachys glauca) without fertilization (PG) and commercial bamboo (Phyllostachys praecox) with and without fertilization (PPF and PP, respectively). The SR rate and soil properties were measured on a monthly timescale. Results showed that the SR rate ranged from 0.38 to 8.53 µmol CO2 m−2s−1, peaking in June. The PPF treatment had higher SR rates than the PP and PG treatments for most months; however, there were no significant differences among the treatments. The soil temperature (ST) in the surface layer (0–10 cm) was found to be the predominant factor controlling the temporal change pattern of the monthly SR rate in the PG and PP treatments (i.e., those without fertilization). A bivariate model is used to show that a natural factor—comprised of ST and soil water content (SWC)—explained 44.2% of the variation in the monthly SR rate, whereas biological (i.e., bamboo type) and management (i.e., fertilization) factors had a much smaller impact (less than 0.1% of the variation). The annual mean SR showed a significant positive correlation with soil organic matter (SOM; r = 0.51, P < 0.05), total nitrogen (TN; r = 0.47, P < 0.05), total phosphorus (TP; r = 0.60, P < 0.01), clay content (0.72, P < 0.05) and below-ground biomass (r = 0.60*), which altogether explain 69.0% of the variation in the annual SR. Our results indicate that the fertilization effect was not significant in SR rate for most months among the treatments, but was significant in the annual rate. These results may help to improve policy decisions concerning carbon sequestration and the management of bamboo forests in China
Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides
We previously reported that acid-degradable methylated β-cyclodextrins (Me-β-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvβ3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvβ3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvβ3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvβ3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvβ3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy
- …