4 research outputs found
Data_Sheet_1_Investigation of phytoplankton community structure and formation mechanism: a case study of Lake Longhu in Jinjiang.docx
In order to explore the species composition, spatial distribution and relationship between the phytoplankton community and environmental factors in Lake Longhu, the phytoplankton community structures and environmental factors were investigated in July 2020. Clustering analysis (CA) and analysis of similarities (ANOSIM) were used to identify differences in phytoplankton community composition. Generalized additive model (GAM) and variance partitioning analysis (VPA) were further analyzed the contribution of spatial distribution and environmental factors in phytoplankton community composition. The critical environmental factors influencing phytoplankton community were identified using redundancy analysis (RDA). The results showed that a total of 68 species of phytoplankton were found in 7 phyla in Lake Longhu. Phytoplankton density ranged from 4.43 × 105 to 2.89 × 106 ind./L, with the average density of 2.56 × 106 ind./L; the biomass ranged from 0.58–71.28 mg/L, with the average biomass of 29.38 mg/L. Chlorophyta, Bacillariophyta and Cyanophyta contributed more to the total density, while Chlorophyta and Cryptophyta contributed more to the total biomass. The CA and ANOSIM analysis indicated that there were obvious differences in the spatial distribution of phytoplankton communities. The GAM and VPA analysis demonstrated that the phytoplankton community had obvious distance attenuation effect, and environmental factors had spatial autocorrelation phenomenon, which significantly affected the phytoplankton community construction. There were significant distance attenuation effects and spatial autocorrelation of environmental factors that together drove the composition and distribution of phytoplankton community structure. In addition, pH, water temperature, nitrate nitrogen, nitrite nitrogen and chemical oxygen demand were the main environmental factors affecting the composition of phytoplankton species in Lake Longhu.</p
Video_1_Development and evaluation of a robotic system for lumbar puncture and epidural steroid injection.MP4
IntroductionLumbar puncture is an important medical procedure for various diagnostics and therapies, but it can be hazardous due to individual variances in subcutaneous soft tissue, especially in the elderly and obese. Our research describes a novel robot-assisted puncture system that automatically controls and maintains the probe at the target tissue layer through a process of tissue recognition.MethodsThe system comprises a robotic system and a master computer. The robotic system is constructed based on a probe consisting of a pair of concentric electrodes. From the probe, impedance spectroscopy measures bio-impedance signals and transforms them into spectra that are communicated to the master computer. The master computer uses a Bayesian neural network to classify the bio-impedance spectra as corresponding to different soft tissues. By feeding the bio-impedance spectra of unknown tissues into the Bayesian neural network, we can determine their categories. Based on the recognition results, the master computer controls the motion of the robotic system.ResultsThe proposed system is demonstrated on a realistic phantom made of ex vivo tissues to simulate the spinal environment. The findings indicate that the technology has the potential to increase the precision and security of lumbar punctures and associated procedures.DiscussionIn addition to lumbar puncture, the robotic system is suitable for related puncture operations such as discography, radiofrequency ablation, facet joint injection, and epidural steroid injection, as long as the required tissue recognition features are available. These operations can only be carried out once the puncture needle and additional instruments reach the target tissue layer, despite their ensuing processes being distinct.</p
Data_Sheet_2_Development and evaluation of a robotic system for lumbar puncture and epidural steroid injection.CSV
IntroductionLumbar puncture is an important medical procedure for various diagnostics and therapies, but it can be hazardous due to individual variances in subcutaneous soft tissue, especially in the elderly and obese. Our research describes a novel robot-assisted puncture system that automatically controls and maintains the probe at the target tissue layer through a process of tissue recognition.MethodsThe system comprises a robotic system and a master computer. The robotic system is constructed based on a probe consisting of a pair of concentric electrodes. From the probe, impedance spectroscopy measures bio-impedance signals and transforms them into spectra that are communicated to the master computer. The master computer uses a Bayesian neural network to classify the bio-impedance spectra as corresponding to different soft tissues. By feeding the bio-impedance spectra of unknown tissues into the Bayesian neural network, we can determine their categories. Based on the recognition results, the master computer controls the motion of the robotic system.ResultsThe proposed system is demonstrated on a realistic phantom made of ex vivo tissues to simulate the spinal environment. The findings indicate that the technology has the potential to increase the precision and security of lumbar punctures and associated procedures.DiscussionIn addition to lumbar puncture, the robotic system is suitable for related puncture operations such as discography, radiofrequency ablation, facet joint injection, and epidural steroid injection, as long as the required tissue recognition features are available. These operations can only be carried out once the puncture needle and additional instruments reach the target tissue layer, despite their ensuing processes being distinct.</p
Data_Sheet_1_Development and evaluation of a robotic system for lumbar puncture and epidural steroid injection.CSV
IntroductionLumbar puncture is an important medical procedure for various diagnostics and therapies, but it can be hazardous due to individual variances in subcutaneous soft tissue, especially in the elderly and obese. Our research describes a novel robot-assisted puncture system that automatically controls and maintains the probe at the target tissue layer through a process of tissue recognition.MethodsThe system comprises a robotic system and a master computer. The robotic system is constructed based on a probe consisting of a pair of concentric electrodes. From the probe, impedance spectroscopy measures bio-impedance signals and transforms them into spectra that are communicated to the master computer. The master computer uses a Bayesian neural network to classify the bio-impedance spectra as corresponding to different soft tissues. By feeding the bio-impedance spectra of unknown tissues into the Bayesian neural network, we can determine their categories. Based on the recognition results, the master computer controls the motion of the robotic system.ResultsThe proposed system is demonstrated on a realistic phantom made of ex vivo tissues to simulate the spinal environment. The findings indicate that the technology has the potential to increase the precision and security of lumbar punctures and associated procedures.DiscussionIn addition to lumbar puncture, the robotic system is suitable for related puncture operations such as discography, radiofrequency ablation, facet joint injection, and epidural steroid injection, as long as the required tissue recognition features are available. These operations can only be carried out once the puncture needle and additional instruments reach the target tissue layer, despite their ensuing processes being distinct.</p