5 research outputs found

    Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer

    No full text
    By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO<sub>2</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, resulting in optimized interface band alignments and enhanced charge lifetime. The average power conversion efficiency is improved from 9.6% to 11.7%, with a highest efficiency of 12.7%, for this low-cost perovskite solar cell

    A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells

    No full text
    Printable mesoscopic perovskite solar cells (PMPSCs) have exhibited great attractive prospects in the energy conversion field due to their high stability and potential scalability. However, the thick perovskite film in the mesoporous layers challenges the charge transportation and increase grain boundary defects, limiting the performance of the PMPSCs. It is critical not only to improve the electric property of the perovskite film but also to passivate the charge traps to improve the device performance. Herein we synthesized a bis-adduct 2,5-(dimethyl ester) C<sub>60</sub> fulleropyrrolidine (bis-DMEC<sub>60</sub>) via a rational molecular design and incorporated it into the PMPSCs. The enhanced chemical interactions between perovskite and bis-DMEC<sub>60</sub> improve the conductivity of the perovskite film as well as elevate the passivation effect of bis-DMEC<sub>60</sub> at the grain boundaries. As a result, the fill factor (FF) and power conversion efficiency (PCE) of the PMPSCs containing bis-DMEC<sub>60</sub> reached 0.71 and 15.21%, respectively, significantly superior to the analogous monoadduct derivative (DMEC<sub>60</sub>)-containing and control devices. This work suggests that fullerene derivatives with multifunctional groups are promising for achieving high-performance PMPSCs

    Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells

    No full text
    Work function of carbon electrodes is critical in obtaining high open-circuit voltage as well as high device performance for carbon-based perovskite solar cells. Herein, we propose a novel strategy to upshift work function of carbon electrode by incorporating boron atom into graphite lattice and employ it in printable hole-conductor-free mesoscopic perovskite solar cells. The high-work-function boron-doped carbon electrode facilitates hole extraction from perovskite as verified by photoluminescence. Meanwhile, the carbon electrode is endowed with an improved conductivity because of a higher graphitization carbon of boron-doped graphite. These advantages of the boron-doped carbon electrode result in a low charge transfer resistance at carbon/perovskite interface and an extended carrier recombination lifetime. Together with the merit of both high work function and conductivity, the power conversion efficiency of hole-conductor-free mesoscopic perovskite solar cells is increased from 12.4% for the pristine graphite electrode-based cells to 13.6% for the boron-doped graphite electrode-based cells with an enhanced open-circuit voltage and fill factor

    The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells

    No full text
    In printable mesoscopic perovskite solar cells (PSCs), carbon electrodes play a significant role in charge extraction and transport, influencing the overall device performance. The work function and electrical conductivity of the carbon electrodes mainly affect the open-circuit voltage (<i>V</i><sub>OC</sub>) and series resistance (<i>R</i><sub>s</sub>) of the device. In this paper, we propose a hybrid carbon electrode based on a high-temperature mesoporous carbon (m-C) layer and a low-temperature highly conductive carbon (c-C) layer. The m-C layer has a high work function and large surface area and is mainly responsible for charge extraction. The c-C layer has a high conductivity and is responsible for charge transport. The work function of the m-C layer was tuned by adding different amounts of NiO, and at the same time, the conductivities of the hybrid carbon electrodes were maintained by the c-C layer. It was supposed that the increase of the work function of the carbon electrode can enhance the <i>V</i><sub>OC</sub> of printable mesoscopic PSCs. Here, we found the <i>V</i><sub>OC</sub> of the device based on hybrid carbon electrodes can be enhanced remarkably when the insulating layer has a relatively small thickness (500–1000 nm). An optimal improvement in <i>V</i><sub>OC</sub> of up to 90 mV could be achieved when the work function of the m-C was increased from 4.94 to 5.04 eV. When the thickness of the insulating layer was increased to ∼3000 nm, the variation of <i>V</i><sub>OC</sub> as the work function of m-C increased became less distinct
    corecore