5 research outputs found
Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer
By the introduction
of an organic silane self-assembled monolayer,
an interface-engineering approach is demonstrated for hole-conductor-free,
fully printable mesoscopic perovskite solar cells based on a carbon
counter electrode. The self-assembled silane monolayer is incorporated
between the TiO<sub>2</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, resulting in optimized interface band alignments and enhanced
charge lifetime. The average power conversion efficiency is improved
from 9.6% to 11.7%, with a highest efficiency of 12.7%, for this low-cost
perovskite solar cell
A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells
Printable mesoscopic
perovskite solar cells (PMPSCs) have exhibited
great attractive prospects in the energy conversion field due to their
high stability and potential scalability. However, the thick perovskite
film in the mesoporous layers challenges the charge transportation
and increase grain boundary defects, limiting the performance of the
PMPSCs. It is critical not only to improve the electric property of
the perovskite film but also to passivate the charge traps to improve
the device performance. Herein we synthesized a bis-adduct 2,5-(dimethyl
ester) C<sub>60</sub> fulleropyrrolidine (bis-DMEC<sub>60</sub>) via
a rational molecular design and incorporated it into the PMPSCs. The
enhanced chemical interactions between perovskite and bis-DMEC<sub>60</sub> improve the conductivity of the perovskite film as well
as elevate the passivation effect of bis-DMEC<sub>60</sub> at the
grain boundaries. As a result, the fill factor (FF) and power conversion
efficiency (PCE) of the PMPSCs containing bis-DMEC<sub>60</sub> reached
0.71 and 15.21%, respectively, significantly superior to the analogous
monoadduct derivative (DMEC<sub>60</sub>)-containing and control devices.
This work suggests that fullerene derivatives with multifunctional
groups are promising for achieving high-performance PMPSCs
Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells
Work function of
carbon electrodes is critical in obtaining high open-circuit voltage
as well as high device performance for carbon-based perovskite solar
cells. Herein, we propose a novel strategy to upshift work function
of carbon electrode by incorporating boron atom into graphite lattice
and employ it in printable hole-conductor-free mesoscopic perovskite
solar cells. The high-work-function boron-doped carbon electrode facilitates
hole extraction from perovskite as verified by photoluminescence.
Meanwhile, the carbon electrode is endowed with an improved conductivity
because of a higher graphitization carbon of boron-doped graphite.
These advantages of the boron-doped carbon electrode result in a low
charge transfer resistance at carbon/perovskite interface and an extended
carrier recombination lifetime. Together with the merit of both high
work function and conductivity, the power conversion efficiency of
hole-conductor-free mesoscopic perovskite solar cells is increased
from 12.4% for the pristine graphite electrode-based cells to 13.6%
for the boron-doped graphite electrode-based cells with an enhanced
open-circuit voltage and fill factor
The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells
In
printable mesoscopic perovskite solar cells (PSCs), carbon electrodes
play a significant role in charge extraction and transport, influencing
the overall device performance. The work function and electrical conductivity
of the carbon electrodes mainly affect the open-circuit voltage (<i>V</i><sub>OC</sub>) and series resistance (<i>R</i><sub>s</sub>) of the device. In this paper, we propose a hybrid carbon
electrode based on a high-temperature mesoporous carbon (m-C) layer
and a low-temperature highly conductive carbon (c-C) layer. The m-C
layer has a high work function and large surface area and is mainly
responsible for charge extraction. The c-C layer has a high conductivity
and is responsible for charge transport. The work function of the
m-C layer was tuned by adding different amounts of NiO, and at the
same time, the conductivities of the hybrid carbon electrodes were
maintained by the c-C layer. It was supposed that the increase of
the work function of the carbon electrode can enhance the <i>V</i><sub>OC</sub> of printable mesoscopic PSCs. Here, we found
the <i>V</i><sub>OC</sub> of the device based on hybrid
carbon electrodes can be enhanced remarkably when the insulating layer
has a relatively small thickness (500–1000 nm). An optimal
improvement in <i>V</i><sub>OC</sub> of up to 90 mV could
be achieved when the work function of the m-C was increased from 4.94
to 5.04 eV. When the thickness of the insulating layer was increased
to ∼3000 nm, the variation of <i>V</i><sub>OC</sub> as the work function of m-C increased became less distinct