19 research outputs found
The removal rate of PAHs after 60 days, 120 days, and 150 days.
<p>The error bars indicate the standard deviation of the means (<i>n</i> = 3).</p
The activity of alkaline phosphatase (ALP) and its influence on ∑8PAHs degradation by five plant species over different time periods.
<p>The error bars indicate the standard deviation of the means (<i>n</i> = 3). Symbols *, ** and *** indicate significant differences at <i>p</i> levels < 0.1, 0.05 and 0.01, respectively. (Different letters denote different periods: 60 days (a), 120 days (b) and 150 days (c).)</p
Tested plants and their basic characteristics.
<p>Tested plants and their basic characteristics.</p
The activity of dehydrogenase (DHO) and its influence on ∑8PAHs degradation by five plant species over different time periods.
<p>The error bars indicate the standard deviation of the means (<i>n</i> = 3). Symbols *, ** and *** indicate significant differences at <i>p</i> levels < 0.1, 0.05 and 0.01, respectively. (Different letters denote different periods: 60 days (a), 120 days (b) and 150 days (c).)</p
The activity of urease (URE) and its influence on ∑8PAHs degradation by five plant species over different time periods.
<p>The error bars indicate the standard deviation of the means (<i>n</i> = 3). Symbols *, ** and *** indicate significant differences at <i>p</i> levels < 0.1, 0.05 and 0.01, respectively. (Different letters denote different periods: 60 days (a), 120 days (b) and 150 days (c).)</p
Genetic prevalence of hVISA and VISA.<sup>a</sup>
<p>CI, confidence interval</p><p><sup>a</sup>References: [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref021" target="_blank">21</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref026" target="_blank">26</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref028" target="_blank">28</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref029" target="_blank">29</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref033" target="_blank">33</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref044" target="_blank">44</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref046" target="_blank">46</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref052" target="_blank">52</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref055" target="_blank">55</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref059" target="_blank">59</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref065" target="_blank">65</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref070" target="_blank">70</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref072" target="_blank">72</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref074" target="_blank">74</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref076" target="_blank">76</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref083" target="_blank">83</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref084" target="_blank">84</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref086" target="_blank">86</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref092" target="_blank">92</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref105" target="_blank">105</a>]</p><p>Genetic prevalence of hVISA and VISA.<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#t003fn002" target="_blank"><sup>a</sup></a></p
Characteristics of the eligible studies.
<p><sup>a</sup> BHI: Brain Heart Infusion Agar; PAP: Population Analysis Profile; PAP-AUC: Population Analysis Profile–Area Under the Curve; MET: Macromethod E-test; MHA: Muller Hinton Agar; E-test GRD: E-test Glycopeptide Resistant Detection</p><p>Characteristics of the eligible studies.</p
Prevalence of hVISA and VISA based on study period, origin of study, and isolate selection.<sup>a</sup>
<p>CI, confidence interval</p><p><sup>a</sup> References: [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref018" target="_blank">18</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#pone.0136082.ref108" target="_blank">108</a>].</p><p>Prevalence of hVISA and VISA based on study period, origin of study, and isolate selection.<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136082#t002fn002" target="_blank"><sup>a</sup></a></p
Table_1_Prevalence of multidrug-resistant hypervirulent Klebsiella pneumoniae without defined hypervirulent biomarkers in Anhui, China: a new dimension of hypervirulence.docx
Klebsiella pneumoniae is an opportunistic pathogen that mainly causes nosocomial infections and hospital-associated pneumonia in elderly and immunocompromised people. However, multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKp) has emerged recently as a serious threat to global health that can infect both immunocompromised and healthy individuals. It is scientifically established that plasmid-mediated regulator of mucoid phenotype genes (rmpA and rmpA2) and other virulence factors (aerobactin and salmochelin) are mainly responsible for this phenotype. In this study, we collected 23 MDR-hvKp isolates and performed molecular typing, whole genome sequencing, comparative genomic analysis, and phenotypic experiments, including the Galleria mellonella infection model, to reveal its genetic and phenotypic features. Meanwhile, we discovered two MDR-hvKp isolates (22122315 and 22091569) that showed a wide range of hypervirulence and hypermucoviscosity without rmpA and rmpA2 and any virulence factors. In phenotypic experiments, isolate 22122315 showed the highest hypervirulence (infection model) with significant mucoviscosity, and conversely, isolate 22091569 exhibited the highest mucoviscosity (string test) with higher virulence compared to control. These two isolates carried carbapenemase (blaKPC − 2), β-lactamase (blaOXA − 1, blaTEM − 1B), extended-spectrum β-lactamase (ESBL) genes (blaCTX − M − 15, blaSHV − 106), outer membrane protein-coding genes (ompA), fimbriae encoding genes (ecpABCDER), and enterobactin coding genes (entAB, fepC). In addition, single nucleotide polymorphism analysis indicated that both isolates, 22122315 and 22091569, were found to have novel mutations in loci FEBNDAKP_03184 (c. 2084A > C, p. Asn695Thr), and EOFMAFIB_02276 (c. 1930C > A, p. Pro644Thr), respectively. Finally, NCBI blast analysis suggested these mutations are located in the wzc of the capsule polysaccharide (cps) region and are responsible for putative tyrosine kinase. This study would be a strong reference for enhancing the current understanding of identifying the MDR-hvKp isolates that lacked both mucoid regulators and virulence factors.</p