4,177 research outputs found
A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing
The past years have witnessed many dedicated open-source projects that built
and maintain implementations of Support Vector Machines (SVM), parallelized for
GPU, multi-core CPUs and distributed systems. Up to this point, no comparable
effort has been made to parallelize the Elastic Net, despite its popularity in
many high impact applications, including genetics, neuroscience and systems
biology. The first contribution in this paper is of theoretical nature. We
establish a tight link between two seemingly different algorithms and prove
that Elastic Net regression can be reduced to SVM with squared hinge loss
classification. Our second contribution is to derive a practical algorithm
based on this reduction. The reduction enables us to utilize prior efforts in
speeding up and parallelizing SVMs to obtain a highly optimized and parallel
solver for the Elastic Net and Lasso. With a simple wrapper, consisting of only
11 lines of MATLAB code, we obtain an Elastic Net implementation that naturally
utilizes GPU and multi-core CPUs. We demonstrate on twelve real world data
sets, that our algorithm yields identical results as the popular (and highly
optimized) glmnet implementation but is one or several orders of magnitude
faster.Comment: 10 page
Generalized Second Price Auction with Probabilistic Broad Match
Generalized Second Price (GSP) auctions are widely used by search engines
today to sell their ad slots. Most search engines have supported broad match
between queries and bid keywords when executing GSP auctions, however, it has
been revealed that GSP auction with the standard broad-match mechanism they are
currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g.,
its theoretical properties are known only for the single-slot case and
full-information setting, and even in this simple setting, the corresponding
worst-case social welfare can be rather bad). To address this issue, we propose
a novel broad-match mechanism, which we call the Probabilistic Broad-Match
(PBM) mechanism. Different from SBM that puts together the ads bidding on all
the keywords matched to a given query for the GSP auction, the GSP with PBM
(denoted as PBM-GSP) randomly samples a keyword according to a predefined
probability distribution and only runs the GSP auction for the ads bidding on
this sampled keyword. We perform a comprehensive study on the theoretical
properties of the PBM-GSP. Specifically, we study its social welfare in the
worst equilibrium, in both full-information and Bayesian settings. The results
show that PBM-GSP can generate larger welfare than SBM-GSP under mild
conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in
Bayesian setting. To the best of our knowledge, this is the first work on
broad-match mechanisms for GSP that goes beyond the single-slot case and the
full-information setting
- …