2 research outputs found

    Fluoro-Functionalized Spherical Covalent Organic Frameworks as a Liquid Chromatographic Stationary Phase for the High-Resolution Separation of Organic Halides

    No full text
    The development of novel stationary phases with specific functionality is of great importance in chromatographic separation. Herein, we fabricated fluoro-functionalized spherical covalent organic frameworks (SF‑COFs) via a bottom-up strategy as stationary phases for high-performance liquid chromatography (HPLC). Benefiting from the significant monodispersity, narrow size distribution, and high fluorine content, the SF‑COFs packed column showed high column efficiency and excellent resolution for the separation of the organic fluorides involving polyfluorobenzenes, polychlorobenzenes, polybromobenzenes, perfluoroalkyl methacrylates, and halogenated trifluorotoluenes, which cannot be separated on the fluorine-free spherical covalent organic frameworks packed column. Especially, the column efficiency of 20 100–38 500 plates/m was obtained for polyfluorobenzenes, and the relative standard deviations of the retention time for continuous 10 separations of polychlorobenzenes and polybromobenzenes were less than 0.98%. Furthermore, the prepared SF‑COFs packed column showed overwhelming superiority in the separation of organic halides compared with commercial C18 and pentafluorophenyl (PFP) packed columns. In addition, the compounds with different hydrophobicity or aromatic ring structure were also successfully separated on the SF‑COFs packed column. This work extended the application of spherical COFs and provided a new way to introduce specific functional groups into the COF-based stationary phase for HPLC

    Proteomics and phosphoproteomics analysis of tissues for the reoccurrence prediction of colorectal cancer

    No full text
    Many stage II/III colorectal cancer (CRC) patients may relapse after routine treatments. Aberrant phosphorylation can regulate pathophysiological processes of tumors, and finding characteristic protein phosphorylation is an efficient approach for the prediction of CRC relapse. We compared the tissue proteome and phosphoproteome of stage II/III CRC patients between the relapsed group (n = 5) and the non-relapsed group (n = 5). Phosphopeptides were enriched with Ti4+-IMAC material. We utilized label-free quantification-based proteomics to screen differentially expressed proteins and phosphopeptides between the two groups. Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were used for bioinformatics analysis. The immune response of the relapsed group (Z-score −2.229) was relatively poorer than that of the non-relapsed group (Z-score 1.982), while viability of tumor was more activated (Z-score 2.895) in the relapsed group, which might cause increased relapse risk. The phosphorylation degrees of three phosphosites (phosphosite 1362 of TP53BP1, phosphosite 809 of VCL and phosphosite 438 of STK10) might be reliable prognostic biomarkers. Some promising proteins and phosphopeptides were discovered to predict the relapse risk in postoperative follow-ups.</p
    corecore