4 research outputs found

    Nonvolatile n‑Type Doping and Metallic State in Multilayer-MoS<sub>2</sub> Induced by Hydrogenation Using Ionic-Liquid Gating

    No full text
    Manipulation of the carrier density of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Herein, we applied the ionic-liquid-gating (ILG) method to inject the smallest ions, H+, into layered MoS2 to manipulate its carrier concentration. The measurements demonstrate that the injection of H+ realizes a nonvolatile n-type doping and metallic state in multilayer-MoS2 with a concentration of injection electron of ∼1.08 × 1013 cm–2 but has no effect on monolayer-MoS2, which clearly reveals that the H+ is injected into the interlayer of MoS2, not in the crystal lattice. The H+-injected multilayer-MoS2 was then used as the contact electrodes of a monolayer-MoS2 field effect transistor to improve the contact quality, and its performance has been enhanced. Our work deepens the understanding of the ILG technology and extends its application in TMDs

    Resolving the Spatial Structures of Bound Hole States in Black Phosphorus

    No full text
    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p<sub><i>x</i></sub> excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices

    Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene

    No full text
    To bridge the gap between laboratory research and commercial applications, it is vital to develop scalable methods to produce large quantities of high-quality and solution-processable few-layer phosphorene (FLBP). Here, we report an ultrafast cathodic expansion (in minutes) of bulk black phosphorus in the nonaqueous electrolyte of tetraalkylammonium salts that allows for the high-yield (>80%) synthesis of nonoxidative few-layer BP flakes with high crystallinity in ambient conditions. Our detailed mechanistic studies reveal that cathodic intercalation and subsequent decomposition of solvated cations result in the ultrafast expansion of BP toward the high-yield production of FLBP. The FLBPs thus obtained show negligible structural deterioration, excellent electronic properties, great solution processability, and high air stability, which allows us to prepare stable BP inks (2 mg/mL) in low-boiling point solvents for large-area inkjet printing and fabrication of optoelectronic devices

    Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene

    No full text
    To bridge the gap between laboratory research and commercial applications, it is vital to develop scalable methods to produce large quantities of high-quality and solution-processable few-layer phosphorene (FLBP). Here, we report an ultrafast cathodic expansion (in minutes) of bulk black phosphorus in the nonaqueous electrolyte of tetraalkylammonium salts that allows for the high-yield (>80%) synthesis of nonoxidative few-layer BP flakes with high crystallinity in ambient conditions. Our detailed mechanistic studies reveal that cathodic intercalation and subsequent decomposition of solvated cations result in the ultrafast expansion of BP toward the high-yield production of FLBP. The FLBPs thus obtained show negligible structural deterioration, excellent electronic properties, great solution processability, and high air stability, which allows us to prepare stable BP inks (2 mg/mL) in low-boiling point solvents for large-area inkjet printing and fabrication of optoelectronic devices
    corecore